EDITOR ASSEMBLER
VERSION 4.x

Published by

MISOSYS, Inc.

Edi t or Assenbl er Version 4.x
Ref er ence Manual

Copyright (C) 1984 by M SOSYS, Inc., Al rights reserved

Reproduction in any nanner, el ectronic, nmechanical, nagnetic, optical,
chem cal, manual, or otherw se, without witten perm ssion, is prohibited.

M SOSYS, Inc.

P. O Box 239
Sterling, Virginia 22170-0239

703- 450- 4181

*** NOT| CE* * *
*** || MI TED WARRANTY* * *

M SOSYS shall have no liability or responsibility to the purchaser or
any other person, company, or entity with respect to any liability, 1loss, or
damage caused or alleged to have been caused by this product, including but
not limted to any interruption of service, |oss of business and anticipatory
profits, or consequential damages resulting from the operation or use of this
progr am

Should this programrecording or recording media prove to be defective
i n manufacture, |abeling, or packaging, M SOSYS will replace the program upon
return of the program package to M SOSYS within 90 days of the date of
purchase. Except for this replacenent policy, the sale or subsequent use of
this programmaterial is without warranty or liability.

*** WARNI NG* * *

This program package is copyrighted with all rights reserved. The
distribution and sale of this programis intended for the personal use of the
original purchaser only and for use only on the conputer system noted herein.
Furt hernmore, copying, duplicating, selling, or otherwise distributing this
product is expressly forbidden. In accepting this product, the purchaser
recogni zes and accepts this agreenent.

M SOSYS, Inc.

P. O Box 239
Sterling, Virginia 22170-0239

703- 450- 4181

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

Ref er ence Manual

Thi s manual docunents both the Mbdel 1/111 assenbler package entitled
"EDAS' and the TRSDOS 6 conpati bl e package entitled "PRO CREATE'. The package
which you have acquired is denoted by the label affixed to the nmaster
di skette.

Distribution Disk - Mdel /111

The Model [/111 Editor Assenbler Version 4.x and each of its utilities,
are single progranms that work on both the Mddel | and Il under LDOS 5.x,
DOSPLUS 3.5, TRSDOsS 2.3, and TRSDCS 1.3. The package includes EDAS/ C\VD,
MEDY CMD, MAS/ CMD, ADDCTLZ/ TXT, XREF/ CMD, TTD/ CVMD, SAI D) CVD, and SAI DI NS/ CWVD.
It is distributed on a 35 track single density data diskette. Mdel 111
TRSDOS 1.3 users wll need to use their CONVERT wutility and a two-drive
system to transfer the files fromthe nmaster disk to a working system disk.

Model | TRSDOS 2.3 users need to first nodify their TRSDOS system via a
one-byte patch prior to transferring the files from the mnmaster disk to a
wor ki ng system disk (see "Model | TRSDOS 2.3 Patch"). The naster disk is

readabl e by LDOS and DOSPLUS. Use under DOSPLUS 3.5 requires patches to EDAS,
MED, MAS, and SAID The patch files are DPEDAS/ PAT, DPMED PAT, DPMAS/ PAT, and
DPSAI Y PAT.

Di stribution D sk - TRSDOS 6. X

The TRSDCS 6. x Editor Assenbler Version 4.x is distributed on a 40 track
double density data diskette. The package includes EDAS/ CMVMD, MED/ C\VD,
MAS/ CVD, ADDCTLZ/ TXT, XREF/ CMD, SAI D/ CVMD, and SAl DI NS/ C\VD.

Maki ng BACKUPs

It is strongly reconmended that before using your new Editor Assenbler,
you shoul d make a BACKUP copy to use in a working environnent and retain the
rel ease diskette as your MASTER copy. This "master"” should be backed up to
produce a "working" copy and the "master" archived. The BACKUP utility
procedures are found in your DOS Oamer's Manual 1in the section entitled
"UTILITY PROGRAMSE'. Don't forget that the rel ease diskette does NOT contain a
DCS; thus, your BACKUP procedure is for a data diskette. After creating a
BACKUP copy of the Editor Assenbler diskette, store the MASTER diskette in a
safe place. Use only your "working" copy for production.

Model | TRSDCS 2.3 Patch

Model | TRSDOS wusers will find difficulty in reading the distribution
disk due to the data address mark used for the directory. Therefore, before
maki ng a BACKUP or copying EDAS files fromthe diskette, you wll need to
change one byte of the TRSDOS 2.3 disk driver using one of the follow ng
three methods. This change will not affect the operation of your TRSDCS.

EDAS | ntroducti on
1-1

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

Method (1) directly nodifies the system diskette with a patch. To
prepare for this patch, obtain a fresh BACKUP of your TRSDOS 2.3 to wuse for
this operation. Then enter the following BASIC programand RUNit. After you
RUN t he program re-BOOT your TRSDCOS di skette to correct the byte in nenory.

10 OPEN'R', 1, " SYS0/ SYS. WKI A: 0"
20 FIELD 1,171 AS R1$, 1 AS RS$, 84 AS R2$
30 GET 1,3: LSET RS$="<": PUT 1,3: CLOSE: END

Method (2) wuses DEBUG to change the byte in menory. Use this if you do
not want to patch your TRSDCOS system di skette and are famliar with DEBUG

At TRSDOS Ready, type DEBUG fol | owed by <ENTER>.
Depress the <BREAK> key to enter the DEBUGger.
Type MA6B0 fol |l owed by the <SPACE> bar.

Type 3C foll owed by <ENTER>.

Type 402D fol | owed by <ENTER>.

OhrwONE

Method (3) uses a POKE fromBASIC to change the value directly in
menory. This procedure is as follows:

1. Enter BASIC (files = 0, protect no nenory)

2. Type POKE &H46B0, 60 fol | owed by <ENTER>.

3. Type CMD'S fol | owed by <ENTER>.
Now, after using any one of the nethods noted above, COPY the EDAS files from
the master diskette to your TRSDOS system di skette.
The EDAS Facility

The M SOSYS Editor Assenbler 4.x includes the following files:

ADDCTLZ/ TXT - a text file with <ENTER> fol |l owed by CTL-Z

EDAS/ C\VD - a conbined line editor and nmacro assenbl er

MAS/ CMVD - a stand-al one nmacro assenbl er

MEDY CMVD - a stand-alone line editor

SAI Y CVD - a stand-alone full-screen text editor

SAIDINS/CMD - SAID installation program

TTD/ CVD - (Model 1/111) a source cassette Tape-to-Di sk converter
XREF/ CVD - a synbol cross-reference |listing generator

The M SOSYS Editor Assenbler is a RAMresident text editor and RAM
resident or direct disk assenbler. The Editor Assenbler was designed to
provide the maxinmum in user interface and ease of use while providing
capabilities powerful enough for the expert Z-80 assenbly | anguage
pr ogr amrer .

The text editing features of the Editor Assenbler facilitate the
mani pul ation of al phanumeric text files for both assenbler source and
conpi l er source |anguages. The nost common use of the editing capability is
in the creation and maintenance of assenmbly |anguage source prograns to be
assenbl ed by EDAS. Through full support of upper and |lower case text entry,
the Editor can serve as a line-oriented text processing tool.

EDAS | ntroducti on
1- 2

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

The assenbl er portion of the Editor Assenbler facilitates t he
translation of Z-80 synbolic |anguage source code prograns into machine
execut abl e code. This object code may then be executed directly fromthe DOS
Ready pronpt.

Al though EDAS could be wused as an entry-level assenbler, the scope of
the docunentation assunmes a previous know edge of assenbl er | anguage and the
hexadeci mal nunber system This is not a "learning" manual - it details the
use of EDAS Version 4.x but in no way attenpts to teach you how to programin
the Z-80 assenbly |anguage. You should have avail able a standard reference
handbook on the Z-80 code. Many texts are avail abl e.

It is necessary that all source text to EDAS, MED, or NMAS nust have a
Control-Z (1AH) as the last character of the text. This byte nust inmediately
follow a CARRI ACE RETURN (ODH). If you are using an editor other than MED or
SAID to prepare your source text, and that editor does not term nate the text
file with a CONTROL-Z, you may have difficulty in wusing the file with the
assenbler. If such is the case, you can either (1) APPEND the file naned
ADDCTLZ/ TXT to your file, or (2) load your file into SAID and resave it.

Not ati on Conventi ons

Braces "{}"

Braces enclose optional information. The braces are never input in
Edi tor Assenbl er commands (Note: braces are used in C | anguage source code).

Ellipses " "
The el lipses represents repetition of a previous item
Li ne nunber "line"
"line" represents a nunber arbitrarily assigned to a statenent for the

purpose of identifying it to the editor functions. "Line" can be any deci nal
nunber ranging from<1l - 65529>

Period "."

A period may be used in place of any line nunber. It represents a
pointer to the current line of source code being assenbled, printed, or
edi t ed. It is termed t he "current line pointer” t hr oughout this

docunent ati on.
Top of Text "#" or "t"

The pound sign character, "#", or the letter "t", may be used in place of
any line nunmber during a |ine nunber reference. It represents the beginning
or top of the text buffer

Bottom of Text "*" or "b"

EDAS | ntroducti on
1- 3

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

The asterisk character, "*", or the letter "b", may be used in place of
any line nunmber during a line nunber reference. It represents the bottom of
the text buffer.

Li ne I ncrenent "inc"

This is a nunber representing an increnent between successive |line
nunbers.

Lower Case Entry

Lower case is supported freely throughout EDAS for text and command
entry. Al Editor Assenbler commands nmay be entered in | ower case as well as
upper case to facilitate its use as a general purpose text editor

Assenbl er source code can be entered in upper case or |ower case. For
| ower case entry, the Editor nmust be in the case converted node (see the
<S>witch case conmand). This node automatically converts | ower case entry to
upper case except for text which is between single quotes (enabling [|ower

case string constants) and for all text following a semcolon (permtting
| ower case coments).

EDAS | ntroducti on
1- 4

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

I nvoki ng EDAS

EDAS is a directly executable conmand file. It is accessed in response
to the DOS conmand pronpt sinply by entering:

EDAS (ECM JCL, ABORT, LC, EXT="ext ", Pn=val) |

the text buffer pointers.

Note: Return to DOS from EDAS via the anch command.

I

I

| EDAS * |
I I
| ECM Is used to specify the Extended Cursor Mbdde |
| for LDCS 5. 1. |
I I
| JCL i s used when running fromJob Control Language |
| so that EDAS uses the @EYIN routine for its |
| keyboard i nput. |
I I
| ABORT if specified, EDAS will automatically abort |
| after an assenbly with errors. It will return |
| to DOS Ready. |
I I
| LC is used when editing LC source files. It will |
| set tabs to 4, default extension to "CCC', and |
| i nvoke "l ower case permtted". |
I I
| EXT="ext" provi des a neans by which the default source |
| file extension can be altered to "ext". |
I I
| Pn=val can be used to pass synbol equates to the |
| assenbler fromthe command line. "n" can range |
| from<1-4> permtting four synmbol equates. |
I I
| * if specified, will reload EDAS and mai ntain |
I I
I I
I I
I I

The optional paraneters shown in parentheses are used to alter the
behavi or of EDAS and give it greater flexibility. These options are as
fol | ows:

ECM

The Extended Cursor Mbde (ECM) facility of the LDOS keyboard driver
permits the differentiation of the UP-ARRONkey versus the Ileft bracket "["
to allow the input of both codes. The LDOS user may specify the ECM paraneter
to use this option on the LDOS KI/DVR The default is normal Kl operation.
The ECM paraneter is for LDOS users only; not for DOSPLUS or TRSDOS.

JCL
The JCL paraneter is applicable only to LDOS. EDAS uses an internal |ine

i nput routine to enable the parsing of certain characters. This hinders the
ability of commandi ng EDAS fromw thin the Job Control Language (JCL) of DOCS.

Runni ng EDAS
2-1

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

If you want to control the assenbly process from JCL, use the JCL paraneter
in the EDAS conmmand line. If you are going to <l>nsert text while in a JCL
node, then you nust wuse the "%1" to simulate a <BREAK> in the JCL file.
Don't forget, the "%1" can only be used if you are going to conpile the JCL.
For exanple, the follow ng enters EDAS and inserts one |ine

edas (jcl)
i
This is a test

%1
/1stop
ABORT
This paranmeter will cause EDAS to abort and return to DOS upon an as-
senmbly or disk error, or one of the following errors: no text in buffer, line
nunber too | arge, bad paraneters, buffer full, no such line, *GET or *SEARCH

error, *SEARCH file not a PaDS, PaDS nenber error. It is useful when running
froma Job Control Language to inhibit erroneous jobs from continuing.

LC

This paranmeter is wused when you are editing LC source files (C |ang-
uage). It will do three things for you: (1) change the source file default
extension from"ASM to "CCC' - "CCC' is used in the LC conpiler, (2) change

the tab stops from every eight colums to every four colums - nore reason-
able for LC source code, (3) invoke the <S>witch case command to "l ower case
permitted® as LC source code is entered primarily in | ower case.

EXT="ext "

The "EXT=ext" paraneter is valid only for LDOS/ TRSDOS 6 wusers. This
paraneter is available for those using the EDAS editor to edit and maintain
files other than EDAS assenbler source files. For instance, the M80 assem
bl er uses "MAC' as the standard extension. FORTRAN uses "FOR'. You nmay be
using EDAS to create or edit JCL files. Use this paraneter to change the de-
fault source file extension (that used with the <L>oad and <Write conmmands)
to one of your choice. You nust enter a full three characters if you use this
par amet er. For exanpl e:

EDAS (EXT="MAC')

specifies that "MAC' be used as the default extension (make sure the supplied
extension is entered i n UPPER CASE)

Note that the override of "CCC' if the LC parameter is used takes pre-
cedence. If LCis specified, the EXT= paraneter is ignored.

Pn=val

This paraneter provides the power of entering synbol table equates di-
rectly fromthe EDAS conmand line. "Pn" is actually four paraneters as "n
can range from <1-4>. Thus, you specify the paraneter as either Pl, P2, P3,
or P4. These paraneters are EDAS entry synbol table additions. By passing
paraneter values wth these on the EDAS command line, you can alter four

Runni ng EDAS
2-2

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

synbol table entries. Thus, you can use these to control EQUate options, pass
val ues to synbols, etc. The format usable is:

Pn sets @ to TRUE. |

I
|
| Pn=ddd sets @ to decinal val ue ddd. |
I
| Pn=X hhhh' sets @ to hexadeci mal val ue hhhh. |
I

TRSDCOS 1.3 users need to enter paraneter values in the follow ng hexadeci ma
format: Oxxxx, where "x" stands for a hexadecimal digit 0-9, AF

The actual | abels added to the synbol table as DEFLs are "@@", where
is the same as the "n" of "Pn". This is depicted as foll ows:

n

| |
| P1 == @d P2 == P3 == @3 P4 == @& |
| |

The four synbols initially have a value of zero (logical FALSE). You can
use these to externally set flags for use in conditional assenbly (or what-
ever el se your heart desires). For exanple, say you have a programthat uses
two conditional synbols, MOD1 and MOD3. If your program has the statements:

MOD1 EQU @a
MOD3 EQU @3

then an EDAS conmand |ine of EDAS (P1) wll set "@d" to TRUE and "@®B"
defaults to FALSE. "MOD1" would be TRUE and "MOD3" woul d be FALSE since the
two conditional synbols you are using are equated to the "@mM" paraneters.

You will find this parameter support a great feature when runni ng EDAS
from JCL.

EDAS *

The "EDAS *" is used to re-enter EDAS keeping the source program and
variables intact. This permts you to recover after a re-boot providing the
Editor Assenbler region is not disturbed or in case you inadvertently entered
the ranch conmmand wi thout saving your source file. Renmenber to hold the
<ENTER> key depressed during the RESET operation if your SYSTEM diskette
contai ns an AUTO function

EDAS Command Mbde

Once "EDAS' is entered, the foll owi ng nessage will appear on the video
di spl ay screen

M SOSYS EDAS- n. n

Runni ng EDAS
2-3

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

The "n.n" is indicative of the current version nunber. This display is fol-
lowed by a right caret ">" pronpt. The pronpting character is displayed
whenever EDAS is ready to accept a conmmand.

I nvoki ng MAS

MAS can assenble a disk file directly fromdisk. Its syntax is:

|
MAS source/ ASM [+L=li sting/ PRN +0O=0bj ect/ CVD +X=r ef erence/ REF |

+S=synbol / SYM +I =i ncl ude/ ASM] [assenbl er swi tches] |
[(pl=val uel, p2=val ue2, p3=val ue3, p4=val ue4, LI NES=n)]

+L=listing/PRN - send listing to spec in lieu of *DQO
Use -LP for printer (or +L=*PR if DOS
supported). WII inhibit -NL and -LP.

+0O=0bj ect / CVD - send object to spec in lieu of "source/ CVMD".
W1l inhibit -NO

+X=r ef erence/ REF

|

|

|

|

|

|

|

|

|

|

|

|

| send cross reference data to spec in lieu
| of "source/REF" if -XR sw tch invoked.
| W11l invoke -XR
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

+S=synbol / SYM send synbol table to spec in lieu of *DO or
*PR dependi ng on setting of -W5 and -LP

switches. WIIl invoke -W5.

+| =i ncl ude/ ASM

use spec for "*I NCLUDE' assenbler directive
which is simlar to "*GET".

Assenbl er swi tches:

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
-NL -WD -LP -W5 -VE -NE -XR -NC -NM -Cl -NH -SL - M -NO |
|
|
|

Par ns:
P1- P4 - as in nanual .
LI NES=n - set printed lines per page to n (abbrev=L). |
|
MAS is essentially the assenbler portion of EDAS. It should react from
the DOS command line just |ike the EDAS assenbler would react fromthe EDAS
conmand line. The DOS command line file redirection options permt you to

easily control the routing of the various outputs. See the section on EDAS
for the use of the Paraneters (Pl1-P4). The Assenbler Sw tches operate accor-
ding to the docunentation covering the "assenbl e" command.

I nvoki ng MED
MED is the line editor portion of EDAS. It supports all EDAS comrands

except for the "A" command. It is invoked with the same syntax as EDAS; how
ever, it does not support the " Pn" paraneters.

Runni ng EDAS
2 -4

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

Synt ax

The basic format of an assenbly | anguage statenent consists of up to
four fields of information. These fields, in order, are:

{LABEL} {OPCODE} {OPERAND{S}} {; COVWVENT}

I

I

LABEL is a synbolic nane assigned the address value |
of the first byte of the object instruction. |

I
I

I
I
I
I
|
| OPCODE is the menonic of a specific Z-80 assenbl er

| i nstruction or pseudo- OPeration code. |
I

| OPERANDS are argunents of the OPCODE.

I

I

I

I

I

the assenbl er but aids in docunenting the

I
I
_ _ _ _ o I
; COMMVENT is an informative notation that is ignored by |
I
sour ce code. |

I

As can be noted, none of the fields are required; however, each line
shoul d contain at least one field. If you want the comment field to occupy
the entire line, start the line with a sem-colon inthe first character

position of the line - then, no other field is needed. A synbolic |abel can
exist by itself on aline. There are sone Z-80 operation codes that have no
argunents; thus, an OPCODE could exist by itself on aline (infield 2). You
wi Il never have an argunent by itself as an argunment relates to an OPCODE

The statenent line is considered to be freely formatted; neaning there
are no columar restrictions. Fields are separated by one or nore tabs or
spaces. If a tab is used, it makes for neater listings. Tabs are retained as
tabs and thus will keep source files smaller than using nmultiple spaces.

Synbol i ¢ Label s

A label is the synbolic nane of a line of code. Labels are always
optional. A label is a string of no greater than 15 characters. The first
character nmust be a letter (A-Z) or one of the special characters, "$", "_",
and "@. A label may contain within character positions 2-15, letters (A2,
decimal digits (0-9), or certain special characters: "@, "_", "?", or "$".

The "$" appearing by itself is reserved for the value of the program counter
of the current instruction. It cannot be used as a single character synbol

A synbol appearing by itself inthe LABEL field of a Iline, will be
interpreted as being equated to the current value of the program counter

Certain |labels are reserved by the assenbler for wuse in referring to
registers. thers are reserved for branching conditions (condition codes) and
may not be wused for labels. (these conditions apply to status flags). The
following | abels are reserved and may not be used for other purposes:

I NFO - Synt ax
2-5

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

Reserved Label s

A B C D E H L I, R IX 1Y, SP, AF, BC, DE, HL
C NC Z Nz, M P, PE, PO ON, OFF

Opcodes

The OPCODES for the Editor Assenbler Version 4.x correspond to those in
t he Z-80- ASSEMBLY LANGUAGE PROGRAMM NG MANUAL, 3.0 D.S., REL 2.1, FEB 1977

Oper ands

Qperands are always one or tw values separated by conmmas. Sone
i nstructions nmay have no operands at all

A value in parentheses "()" specifies indirect addressing when used with
registers, or "contents of" otherw se.

Constants are data declarations of fixed value. They are constructed as
a sequence of one or nore digits and an optional radix specification
character. The digits must be wvalid for the radix used. The follow ng table
denot es aceptabl e constant conposition

Data Type Radix Char Digits Exanpl es
hexadeci mal <0-9,A-F> 1AH, OABH, OFFH
oct al Oor Q <0- 7> 166Q 1660
bi nary B <0- 1> 01101110B

I
I
I
H I
deci nal D <0- 9> 107D, 107, 15384 |
I
I
Note: Decimal is assuned if the radix character is omtted |

I

A constant not followed by one of the radix characters is assumed to be
decimal. A constant nust begin with a decimal digit. Thus "FFH' is not
permtted, while "OFFH" is valid.

perands may also be constructed as conplicated expressions using the
mat hemati cal and |ogical operators. Due to the extent of the docunentation
they are described in the section on "Expressions”

Comment s

Al conmrents nust begin with a semicolon ";". If a source statenent |ine
starts with a semicolon in the first character position of the line, the
entire lineis a coment. |If EDAS is in the |ower case converted node,
conments will be retained in whatever case they are entered. It is suggested

that comrents be entered in lower case with punctuation as required. It wll
make your source code listings much easier to read. All entry of text
following a sem-colon is maintained inits entered case

I NFO - Synt ax
2-6

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

Expr essi ons

A value of an operand may be an expression consisting of multiple terns
(labels and data constants) connected wth nmathematical operators. These
expressions are evaluated in strictly LEFT to RIGHT order. No parentheses are
allowed. EDAS does not support operator precedence. Mst operators are

bi nary, which neans that they require two argunments. Both "+" and "-" have

unary uses also. The follow ng operators are supported:
I I
| Operator Functi on Exanpl e |
I I
| + Addi tion val uel + val ue2 |
| - Subtraction val uel - val ue2 |
| * Mul tiplication val uel * val ue2 |
| / Di vi si on val uel / val ue2 |
| . MOD. Modul o Di vi si on val uel . MOD. val ue2 |
| < Shift Left or Right val uel < -val ue2 |
| .AND. or & Logical Bitw se AND val uel . AND. val ue2 |
| .OR or ! Logical Bitw se OR valuel .OR value2 |
| . XOR Logi cal Exclusive OR val uel . XOR val ue2 |
| . NOT. Logi cal 1's Conpl enent FALSE EQU . NOT. TRUE |
| . NE. Logi cal Binary Not Equal val uel .NE. value2 |
| . EQ Logi cal Binary Equal val uel .EQ value2 |
| . GE greater than or equal to valuel .GE value2 |
| . GT. greater than val uel .GI. value2 |
. LE.	ess than or equal to valuel .LE. value2
.LT.	ess than valuel .LT. value2
. SHL. shift valuel	eft val uel .SHL. val ue2
. SHR shift val uel right val uel .SHR val ue2	
.HGH obt ai n high order byte . H GH. val ue	
. LOW obtain	ow order byte . LOW val ue
% Lengt h of MACRO %LABEL or %%	
Y& MACRO	abel concatenati on #NAVEY&L
I I

Addition (+)

The addition operator wll add two constants and/or synbolic val ues.

VWhen used as a unary operator, it sinply echoes the val ue.

001E CON30 EQU 30

0010 CON16 EQU +10H

0003 CON3 EQU 3

002E A2 EQU CON30+CON16

| NFO - Expressions
2 -7

M SOSYS Editor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved
Subtraction (-)

The m nus operator wll subtract two constants and/or synbolic val ues.
Unary m nus produces a 2's conpl enent.

000E A2 EQU CON30- CON16
FFF2 A EQU -A2
Mul tiplication (*)
The multiplication operator will performan integer nultiplication of a

16-bit multiplicand by an 16-bit nultiplier. Overflow of the resulting 16-bit
value is not flagged as an error.

01EOQ A5 EQU CON30* CON16
BF20 A6 EQU 60000* 3 ;this overfl ows
Di vision (/)

The division operator wll perform an integer division of a 16-bit
di vidend by an 8-bit divisor.

0002 A7 EQU 5/ 2
1BAD A8 EQU 48928/ 7
Modul o (. MOD.)

The nodul o operator <calculates the remainder of the above integer
di vi si on.

0001 A9 EQU 5. MOD. 2
0005 AL0 EQU 48928. MOD. 7
Shift (<)

This operator can be used to shift a value left or right. The formis:

I I
| VALUE < {-}AMOUNT |

If AMOUNT is positive, VALUE is shifted left. |If AMOUNT is negative,
VALUE is shifted right. The magnitude of the shift is determned fromthe
nuneric val ue of AMOUNT.

0057 H ORD EQU 5739H<- 8
C000 Al EQU 3C00H<4
0300 A2 EQU 3C00H<- 4
BBFF A3 EQU 3CBBH<8+255
0300 A3 EQU 15+3C00H- 4

| NFO - Expressions
2-38

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

Logical AND (. AND. or &)

The logical AND operator bitwise ANDS tw constants and/or synbolic
val ues. Each bit position of the 16-bit resultant value is a "1" only if both
argunents have a "1" in the corresponding position, or a "0" if either
argunment has a "0".

3C00 Al EQU 3C00H&OFFH
0000 A2 EQU 0&15
0000 A3 EQU OAAAAH. AND. 5555H

Logical OR (.OR or !)

The logical OR operator bitwise "ORS' two constants and/or synbolic
val ues. Each bit position of the 16-bit resultant value is a "1" if either
argunent has a "1" in the corresponding position, or a "0" if neither
argunment has a "1".

3CFF Al EQU 3C00H! OFFH
000F A2 EQU 0.0R 15
FFFF A3 EQU O0AAAAH. OR. 5555H

Logi cal XOR (. XOR.)

The logical XOR operator performs a bitwise exclusive OR on two
constants and/ or synbolic values. Each bit position of the 16-bit resultant
value is a "1" only if both argunents have reversed bits in the correspondi ng
position (i.e. one nmust have a "1" while the other nust have a "0"). The XOR
operation is considered a nodul o two addition.

3CF8 Al EQU 3Q07H. XOR. OFFH
0007 A2 EQU 8. XCR 15
FFFF A3 EQU OAAAAH. XOR. 5555H

Logi cal NOT (. NOT.)

This is a wunary operator. It perforns a one's conplenment on the termit
precedes. (hserve the foll owi ng exanpl es:

FFFE T1 EQU .NOT. 1
FFFF T2 EQU . NCOT. 0
0000 T3 EQU .NCOT. -1

| NFO - Expressions
2-9

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

Logi cal NOT- EQUAL (.NE.)

This operator is a binary operator that conpares two adjacent
resultant value is TRUEif the terns are not equal. A FALSE

terns. The
result 1is

returned if the two terns are equal. Qbserve the foll ow ng exanpl es:

0000 T1 EQU 1000. NE. 1000
FFFF T2 EQU 1000. NE. 10
FFFF T3 EQU 1.NE -1

0000 T4 EQU .NOT. 0. NE. -1

Logi cal EQUAL (.EQ)

This operator is a binary operator that conpares two adjacent terns. The

resultant value is TRUE if the ternms are equal. A FALSE result is
the two ternms are not equal. Observe the follow ng exanples:

FFFF T1 EQU 1000. EQ 1000
0000 T2 EQU 1000.EQ 10
0000 T3 EQU 1.EQ-1

FFFF T4 EQU .NOT.0.EQ-1

Logi cal GREATER- THAN OR- EQUAL- TO (. GE.)

This is a binary operator that conpares two adjacent
resultant value is TRUE if the left termis >= the right term

00000 T1 EQU 1.GE2
FFFF T2 EQ 2.GE2
Logi cal GREATER THAN (. GT.)

This is a binary operator that conpares two adjacent
resultant value is TRUE if the left termis > the right term

0000 T1 EQU 1.Gl. 2
0000 T2 EQU 2.GTI.2

Logi cal LESS- THAN- OR- EQUAL- TO (. LE.)

This is a binary operator that conpares two adjacent
resultant value is TRUE if the left termis <= the right term

FFFF T1 EQU 1.LE 2
FFFF T2 EQU 2.LE. 2

| NFO - Expressions
2 - 10

returned if

ternms. The

ternms. The

ternms. The

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

Logi cal LESS-THAN (.LT.)

This is a binary operator that conpares tw adjacent terns. The
resultant value is TRUE if the left termis < the right term

FFFF T1 EQU 1.LT.2
0000 T2 EQU 2.LT.2
Logi cal SHI FT LEFT (.SHL.)

This is a binary operator that shifts the left term a nunber of bits
left according to the right term It is the same as "val uel<val ue2".

2340 T1 EQU 1234H. SHL. 4

Logi cal SHIFT RI GHT (. SHR)

This is a binary operator that shifts the left term a nunber of bits
right according to the right term It is the same as "val uel<-val ue2".

0123 T1 EQU 1234H. SHR. 4

btai n H GH ORDER byte (.H GH.)

This is a unary operator that provides a |l ow order result which is equal
to the high order value. It is the sane as "val ue. SHR 8".

0012 T1 EQU . H GH 1234H

btai n LOW ORDER byte (.LOW)

This is a unary operator that provides a loworder result which is equal
to the low order value. It is the sane as "val ue. AND. OFFH".

0034 T1 EQU . LOW 1234H

Macro Length Qperator (%

The length operator is applicable only with MACRO usage. Therefore, its
use will be discussed in the chapter on MACRO PROCESSI NG

| NFO - Expressions
2 -1

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

Z-80 Status Indicators (FLAGS)

The flag registers (F and F') supply information regarding the status of
the Z-80 at any given tinme. The bit positions for each flag are:

N is the Add/Subtract flag.
P/IVis the Parity/ Overflow fl ag.
H is the Half-carry flag.

is the Sign flag.
i s not used.

X 0N

I I
I I
I I
I I
| C is the Carry flag. is the Zero flag. |
I I
I I
I I
I I

Each of the two flag registers contain six (6) bits of status which are
set or reset by CPU operations. Four of these bits are testable (C, PV, Z
and S) for use with conditional junp, call, or return instructions. Two flags
(H N are not directly testable and are used internally to handle Binary
Coded Decimal (BCD) arithmetic. Two flag register bits (3, 5) are unused.

In the Z-80 instruction set, the "CALL", "JP", and "JR' instructions can
contain a "condition code" which is part of the argunment of the OPCODE. The
branching determination is performed according to the result of the flag
regi ster status. The mmenonics for these condition codes are as foll ows:

I I
| Fl ag Condi ti on Set Condi ti on NOT Set |
I I
| Carry C NC |
| Zero z Nz |
| Sign M (m nus) P (plus) |
| Parity PE (even) PO (odd) |
I I

Carry Flag (O

The carry flag is set or reset depending on the operation being
performed. For "ADD' instructions that generate a carry and "SUBTRACT"
instructions that generate a borrow, the carry flag will be set. The carry
flag is reset by an "ADD' that does not generate a carry and a " SUBTRACT"
that generates no borrow The "DAA" instruction wll set the carry flag if
the conditions for nmaking the deci mal adjustment are net.

For instructions RLA, RRA RLS, and RRS, the carry bit is used as a link
between the least significant bit (LSB) and nost significant bit (MSB) for
any register or menory location. During instructions RLCA, RLC s and SLA s,
the carry contains the last value shifted out of Bit 7 of any register or
menory location. During RRCA, RRC s, SRA's, and SRL s, the carry contains the
| ast value shifted out of Bit O of any register or nenory | ocation.

I NFO — CPU Fl ags
2 - 12

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

For the logical instructions ANDs, ORs, and XCR s, the carry flag wll
be reset. The carry flag can al so be set (SCF) or conpl enmented (CCF).

Add/ Subtract Flag (N)

This flag is wused by the decinmal adjust accumul ator instruction (DAA) to
di sti ngui sh between "ADD' and "SUBTRACT" instructions. For all " ADD"
instructions, "N wll be set to a "zero". For all "SUBTRACT" instructions,
"N' will be set to a "one".

Parity/ Qverflow Flag (P/V)

This flag's state depends on the operation being performed. For
arithnetic operations, P/V indicates an overflow condition when the
Accumul ator result is greater than the maxi mum possible nunber (+127) or is
|l ess than the mninmumpossible nunber (-128). The overflow condition is
determ ned by exam ning the sign bits of the operands.

For addition, operands with different signs wll never cause overflow.
VWhen adding operands with |like signs and the result has a different sign, the
overflow flag is set. For exanple:

+120 = 0111 1000 ADDEND
+105 = 0110 1001 AUGEND
+225 = 1110 0001 (-95) Sum

Addi ng two nunbers together would result in a nunber that exceeds +127; thus
t he added positive operands result in an incorrect negative nunber (-95). The
overflow flag is therefore set.

For subtraction, overflow can occur for operands of unlike signs.
Operands of like sign will never cause overflow For exanple:

+127 = 0111 1111 M NUEND
(-)-64 = 1100 0000 SUBTRAHEND
+191 = 1011 1111 DI FFERENCE

The m nuend sign has changed frompositive to negative giving an incorrect
di fference. The overflow flag is therefore set.

P/V is used with | ogical operations and rotate instructions to indicate
the parity of the result. The nunber of "one" bits in a byte are counted. If
the total is odd, "ODD'" parity (P=0) is flagged. If the total is even, "EVEN
parity is flagged (P=1). When inputting a byte froman I/O device "IN, (Q",
the flag will indicate the parity of the data.

During search instructions (CPlI, CPIR CPD, and CPDR) and bl ock transfer
instructions (LD, LD R LDD, and LDDR), the P/V flag nonitors the state of
the byte count register (BC), Wen decrenenting the byte counter results in a
zero value, the flag is reset to zero, otherwise the flag is a one.

I NFO — CPU Fl ags
2 - 13

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

During "LD A/ 1" and "LD A/R' instructions, the P/V flag will be set with
the contents of the interrupt enable flip-flop (I1FF2) for storage or testing.

The Half Carry Flag (H

The half carry flag's state depends on the carry and borrow status
between bits 3 and 4 of an 8-bit arithnmetic operation. It is used by the
deci mal adjust accunulator instruction (DAA) to correct the result of a
packed BCD add or subtract operation. The "H' flag's state is according to
the follow ng tabl e:

I I
| H ADD SUBTRACT |
I I
| 1 There is a carry from There is no borrow |
| Bit 3to Bit 4 fromBit 4 |
I I
| 0 There is no carry There is a borrow |
| fromBit 3to Bit 4 fromBit 4 |
I I

The Zero Flag (2)

The Zero flag (2) is set or reset if +the result generated by the
execution of a certain instructionis a zero. For 8-bit arithnetic and
| ogi cal operations, the "zZ" flag will be set to a "one" if the resulting byte
in the Accunmul ator is zero.

For conpare (search) instructions, the "Z" flag will be set to a "one"
if a conparison is found between the value in the Accunul ator and the nenory
| ocation pointed to by the contents of the register pair HL.

Wen testing a bit in a register or nmenory location, the "Z" flag will
contain the state of the indicated bit.

VWen a byte is transferred between a nmenory location and an |I/O device
(INI', IND, QUTI, or QUID), if the result of register B minus one (1) is zero,
the Z flag is set, otherwise it is reset. Aso for byte inputs from 1/0
devices using "INr,(Q", the Zflag is set to indicate a zero byte input.

The Sign Flag (9

The Sign flag (S) stores the state of the most significant bit of the
accunmul ator. When the arithmetic operations are performed on signed nunbers,
bi nary two's conplenent notation is used. A positive nunber is identified by
a "zero" in bit 7; a negative nunber by a "one". The binary equivalent of a
positive nunber's magnitude is stored in bits O to 6 giving a range of 0 to
127. A negative nunber is represented by the tw's conplenent of the
equi val ent positive nunber. The range for negative nunbers is -1 to -128.

VWhen inputting a byte froman 1/O device to a register, "IN r,(Q", the
"S" flag will indicate either positive (S=0) or negative (S=1) data.

I NFO — CPU Fl ags
2 - 14

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

Pseudo- OPs

These assenbler operations, although witten nmuch Iike pr ocessor
instructions, direct the assenbler to perform specific tasks during the
assenbly process but have no neaning to the Z-80 processor. Sone generate
data values and are called "data decl arati on" pseudo-OPs. Qthers that contro
pagi ng operations are terned, "listing" pseudo-OPs. Operations to invoke the
assenbly of blocks of code based on conditional evaluations are supported
t hrough many "conditional" pseudo-OPs. The assenbl er pseudo-OPs are:

Const ant Decl ar ati ons

DATE Assenbles systemdate as 8-character string, MM DD YY.

DB Specifies a data byte or string of bytes. Al so
equi valent to DEFB, DEFM and DM

DC Specifies a multiple of byte constants.

DS Reserves a region of storage for program use.

|
|
|
|
|
|
|
|
_ |
Equi val ent to DEFS. |
|
|

DSYM Assenbles "label" as an n-character string. (Simlar
to the construct, DB ' &#label', in a macro.

|
DW Specifies a word (16-bit data value) or a sequence of

words. Al so equival ent to DEFW |

|

DX Assenbl es "expression" as a 4-hexadecimal digit string.|

TIME Assenbles systemtinme as 8-character string, HH MM SS.
|

Oigins and Val ues

DEFL Establ i shes a value for a | abel which can be
altered during the assenbly.

END Signifies the end of a *GET or *SEARCH nmenber. W] |
i ndicate the end of the assenbly when detected in
the text buffer. Supplies the transfer address.

ENTRY Uses the result of "expression" as the transfer
address. This val ue overrides any expression on the
final "END' statenent.

EQU Est abl i shes a constant value for a |abel.

LORG Establishes a load origin for executable files.

ORG Est abl i shes an execution origin for executable
object code files or in-nmenory assenblies.

Pseudo- OPs - Cenera
2 - 15

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

| F
| F1

| F2

| F3

| FEQ
| FEQS
| FLT
| FLT$
| FGT
| FGT$
| FNE
| FNES

| FDEF

| FNDEF

| FREF

ELSE

ENDI F

Not e:

Condi ti onal s
Condi ti onal eval uation of expression

Logically TRUE if the assenbler is on the first pass.

Logically TRUE if the assenbler is on the second pass.

Logically TRUE if the assenbler is on the third pass.
Logically TRUE if expressionl = expression2
Logically TRUE if stringl = string2.

Logically TRUE if expressionl < expression2
Logically TRUE if stringl < string2.

Logically TRUE if expressionl > expression2
Logically TRUE if stringl > string2.

Logically TRUE if expressionl <> expression2
Logically TRUE if stringl <> string2.

Logically TRUE if "l abel" has been defined prior to
this statenment, else FALSE.

Logically TRUE if "l abel" has not been defined prior
to the statenent, else FALSE

Logically TRUE if "l abel" has been referenced but not
defined prior to the statenent, el se FALSE

Alternate clause to be assenbled if the prior clause
has eval uat ed FALSE

Signifies the end of a conditional clause.

"1 Fxx$" denotes alternate nacro string conparison

Pseudo- OPs - Cenera
2 - 16

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

ENDM
ERR

EXI T™M

MACRO

CPTI ON

PAGE

REF

REPT

SPACE
SUBTTL

TI TLE

[**]

M scel | aneous
Cenerates an object code file conment record.
Desi gnates the end of a MACRO nodel
Forces an assenbly error.

Can be used to prematurely exit froma MACRO expansion.
This is normally used within a conditional. [**]

The statenments within | RP-ENDM are repeated for as
many itens are in the argunent list with "dumy" being
repl aced by each argunment in turn. [**]

The statenments within | RPG-ENDM are repeated for each
character in the character-list while the "identifier"
is replaced, in turn, fromthe identifier list. [**]
Desi gnates the prototype of a MACRO nodel

This pernmits the altering of any of the perm ssible
assenbl er switches fromwithin the source code.

Transmits a formfeed during a listing.

Forces a reference to the synbols identified in the
argunent |ist.

The statenments w thin REPT-ENDM are repeated accordi ng
to the result of "expression". [**]

Cenerates extra line feeds during a listing.
I nvokes a heading sub-title for listings.
I nvokes a heading title for listings.

Details are in the section on USI NG MACRCS

Pseudo- OPs - Cenera
2 - 17

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

Pseudo- OP DB

The "DB" pseudo-OP is used to define a data byte or series of bytes. Its
syntax is:

DB n{,n}{, c'}{, s}{, expression}

n Defines the contents of a byte at the current
ref erence counter to be "n".

C Defines the content of one byte of menory to
be the ASCII representation of character "
's' Defines the contents of n bytes of nmenory to

be the ASCII representation of string
where "n" is the length of "

s".

S .

expression |s a mathematical expression which eval uates
to a nunber in the range <0-255>.

I I
I I
I I
I I
I I
I I
I I
I ¢
I I
I I
I I
I I
I I
I I
I I
I I

The constant declaration "DB' permts the concatenation of its data
argunents using the conma "," as an argunent separator. Data values are
denot ed according to the specifications in the chapter on ASSEMBLY LANGUAGE

I NFORVATI ON.

The pseudo-OPs DM DEFB, and DEFM can be wused in lieu of "DB' and are
conpl etely equi val ent.

"DB" string argunments permt two connected single-quotes to indicate a
singl e-quote value PROVIDED that two or mnore characters precede the 2-quote
appearance in the string. For exanple:

DB "AB ' C
will produce the character string: 41 42 27 43. This may have been coded as a
conpl ex declaration such as, "'AB ,27H'C", but the extensive declaration

support in EDAS provides the easier specification

The following are valid declaration statenments:

DB "This'," ',"is"," ","a," ","test
DB 1, 2, " buckl e your shoe', 3,4,'close the door'
DB "This is a tes','t'!80H
The hexadeci nal expansions of the constant wll appear in |l|istings as

rows of eight bytes per row The expansions nmay be suppressed from your
listings by using the assenbler switch, -NE

Pseudo- OPs — Data Decl arations
2 - 18

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

Pseudo- OP DC

Thi s pseudo-OP defines a repetitive constant. Its syntax is:

DC quantity, val ue

guantity Speci fies how many times that "value" is to be
repeated as a data byte. It can be defined as
any other data definition: n, expression,

c .

val ue Is the constant to be repeated. As in a "DB"
data declaration, the value can be specified
as a character, 'c', a nuneric value, n, or an
expression evaluated to a nunber in the

I
I
I
I
I
I
I
I
I
I
I
range <O0-255>. |
I

The pseudo-OP, "DC', will define a repetitive constant and elimnate the
necessity of defining a series of identical data values by Ilong DB
speci fications. For example, the following two statenents are equival ent:

oB o,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
DC 16,0

The latter is much shorter, easier to enter as text, nore readable, and takes
up less space in its source form

The "quantity" must range from1l to 65535 (a zero value wll result in
65536). The "value" nmust be less than 256. Wth this pseudo-OP, you can
generate repetitions of a single constant. For exanple, say you want to set
100 storage locations to a zero value during the assenbly. Insert the
st at enent ,

DC 100, 0

and it will be done. A character constant can also be used for "value" as
illustrated in the foll ow ng exanpl e:

DC 256, "' A
which will set the next 256 storage |locations to the letter, "A"
The expansions of the constant will appear in listings just as they do

in the DB expansion. The expansions may be suppressed fromyour |istings by
usi ng the assenbler switch, -NE

Pseudo- OPs — Data Decl arations
2 - 19

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

Pseudo- OGP DS

This pseudo-OP is wused to reserve a quantity of storage |ocations for
use by your program Its syntax is:

DS nn

nn Reserves "nn" bytes of nmenory starting at the
current value of the reference counter

The DS pseudo-OP can al so be entered as "DEFS".

The quantity, "nn", can be a data value or an expression. Note that "DS'
does not define data values. The "DS' pseudo-OP adds the quantity of storage
| ocations reserved to the current programcounter (PC) to calculate a new PC
val ue. Wien generating an object code file, this action will cause the next
assenbled byte to create a new load record. The follow ng exanpl es depi ct
various "DS' decl arations.

The st at enent,
FCB DS 32

will define a 32-byte region for later use as a File Control Block. Its
origin can then be referenced as "FCB'. The statenent,

TABLE DS TABLE_LENGIH * TABLE_W DTH

will reserve a quantity of storage locations equal to the result of
multiplying the two terns, TABLE LENGTH and TABLE W DTH.

If your source code is being assenbled wth the "-Cl" swtch, EDAS
automatical ly converts al | " DS" decl arati ons into equi val ent " DC
declarations wusing a value equal to zero. The above two exanples would
therefore be translated to the foll ow ng:

FCB DC 32,0
TABLE DC TABLE_LENGIH * TABLE_W DTH, O

Pseudo- OPs — Data Decl arations
2 - 20

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

Pseudo- OP DW

This decl aration specifies a 16-bit data value. Its syntax is:

DWnn{, "' cc' }{, nn}

I

I

I

| nn Defines the contents of a 2-byte word to be
| the val ue, "nn".
I

I

I

I

cc' Defines the contents of a 2-byte word to be
the characters, 'cc'

The DW pseudo-OP can al so be entered as "DEFW.

In the expansion of the data word, its least significant byte is |ocated
at the current program reference counter while the nost significant byte is
located at the reference counter plus one. The data word can be a nuneric
constant, an expression that evaluates to a 16-bit value, or a character
constant of one or two characters. The following exanples illustrate various
forms of "DW data decl arations.

DW 10000, 1000, 100, 10, 1
DW " ab’
DW 'R,'0,'Yy
Note that if a single character is defined as a character constant word, the

|oworder byte of the word wll contain the character value and the
hi gh-order byte of the word will be set to zero.

Pseudo- OGP DATE

The DATE pseudo-OP is used to assenble the systemdate as an 8-character
string, MMDDYY. It's syntax is:

I I
| DATE |

This actual date is established when you power up your conputer and
respond to the DOS' s date entry query or by using the DOS s DATE library
conmand. The date string can be useful to place an ASCIlI date stanp in your
obj ect programfor the purpose of identification as to when it was assenbl ed.
See exanple 1 for an illustration of DATE.

Pseudo- OPs — Data Decl arations
2 - 21

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

Pseudo- OP DSYM

DSYMis usually used within a macro to assenble the "synbol" argunent as
if it were a DB character string. It's syntax is:

| abel DSYM synbol

I I
I I
| _ |
| [Iabel An optional statement | abel. |
I I
| synbol A defined synbol . |
I I

VWen used in a nmacro environnent, "synbol"” wll have the "#" indicator
prefixed to designate the synbol as a nmacro dunmmy argunent nanme. An
alternative nmethod is to use the anpersand escape function within a standard
qgquoted character string such as "DB ' &#tsynbol'" which al so assenbles to the
same thing in a macro. See exanple 1 for an illustration of DSYM

Pseudo- OP DX expression

DX assenbl es "expression" as a 4-hexadecimal digit character string. Its
syntax is:

| abel DX expr essi on

I I
I I
| _ |
| [Iabel An optional statement | abel. |
I I
| expression An expression operand. |
I I

The expression can be a sinple synbol or a conplicated collection of
terms. The expression is evaluated to a 16-bit value and output as four
hexadeci mal digits. See exanple 1 for an illustration of DX

PSEUDO- CP TI ME

The TIME pseudo is used to assenble the systemtine as an 8-character
string, HHH MMSS. It's syntax is:

I I
| TIME |

This actual time is established when you power up your conputer and
respond to the DOS's tine entry query or by using the DOS s TIME library
conmand. The TIME string can be useful to place an ASCII TIME stanp in your
object program for the purpose of identification as to when it was assenbl ed.
See exanple 1 for an illustration of TIME

Pseudo- OPs — Data Decl arations
2 - 22

3000
3000
3000
3000
3000
3000
3000
3003
3005
3006
3007

210730
3EOA

EF
(0°]

3007+42

45

300C+33

3010
3011

3019

0000

30
0D
31
32
30
39

47 49

30 30

2F 33

3A 31

M SOSYS Edi t or

Assenbl er Version 4.x

Copyright 1984 M SOSYS, Inc., Al rights reserved

Exanple 1
00001 ORG 3000H
00002 LBLNAM MACRO #SYM
00003 DSYM #SYM
00004 DX #SYM
00005 ENDM
00006 ENTRY BEG N
00007 BEGN LD HL, MBG$
00008 LD A 10
00009 RST 40
00010 RET
00011 MBGH LBLNAM BEGQ N
00012 DSYM BEGA N
4E
00013 DX BEGA N
00014 DB 13
00015 DATE
31 2F 38 34
00016 TI ME
31 3A 33 36
00017 END

Pseudo- OPs — Data Decl arations

2 -

23

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

Pseudo- OP DEFL

The "DEFL" pseudo-OP assigns a value to a label. The value is permtted
to be changed during the assenbly. The "DEFL" syntax is:

| abel DEFL nn
| abel DEFL expression

expression Sets the value of "label" to the eval uated
result of "expression".

I
I
I
I
| nn Sets the value of "label"” to the quantity "nn"
I
I
I
I

This declaration is simlar to the "EQJ' declaration except that the
| abel value is permitted to change during the course of the assenbly w thout
produci ng phase errors (which are generally observed as nunerous MILTIPLY

DEFI NED SYMBOL errors). If the value of "label" is declared by a "DEFL", the
decl aration can be repeated in the programwi th different values for the sane
| abel. One useful purpose to support this method of coding would be to

simul ate the maintenance of two programreference counters. Observe the fol-
| owi ng sequence of code:

some code

PROGSH DEFL $; Save current program counter
ORG DATAS ; Set PC to data counter

VBGL DB "This is a test nessage', CR

DATA$ DEFL $; Save current data counter
ORG PROGS ; Reset PC to program counter
... mhore code

PROGS DEFL $; Save current program counter
ORG DATAS$; Now set PC to the data counter

MBG&2 DB " Anot her nessage', LF, CR

DATA$ DEFL $; Save new current data counter
ORG PROGS ; then re-establish PC

conti nuation of program code

The program mai ntains two address counters. One is utilized as a counter to
keep track of the code portion of the program (PROGS), while the other is
used to keep track of the data portion of the program (DATA$). This techni que
can be wused to keep the data fields associated with routines in close prox-
imty to their associated routine in the source code, while the object code
| ocation of the data is collected into sone other region

Labels defined as "DEFL" wll be carried as "DEFL" in the EQUate file
generation of the Cross-Reference utility. They will also be notated in the
cross-reference listing by a plus sign, "+", prefix to the | abel nane.

Pseudo-OPs — Oigins and Val ues
2 - 24

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

Pseudo- OGP END

The "END' pseudo is used to denote the exit of a *GET or *SEARCH pro-
cess, or when used in the nmenory text buffer, it will denote the end of the
source code. Its syntax is:

END { expressi on}
END {I| abel }

Signifies the end of the source program (see
text for handling during *GET and * SEARCH).

expression Specifies an execution transfer address branch
that will be used by the system | oader

| abel Speci fies an execution transfer address branch
to be the value of "label"

The "END' statenent is used to indicate to the assenbler, when the |ast
source code statement is reached so that any follow ng statenents are ignor-
ed. If no "END' statement is found, a warning is produced. The END st at enent
can specify a transfer address (i.e. END LABEL or END 6000H). The transfer
address is used by the DOS programexecution to transfer control to the ad-
dress specified in the END statenent. Note that the END statenent cannot have
a label in the label field of the statenent).

If an "END' statenent is detected in a file read via *GET, the "END' is
treated as if the end-of-file was reached and EDAS will switch back to as-
senbl e fromwhat ever invoked the *CGET. A simlar process takes place wth
*SEARCH, except that EDAS continues the normal searching process.

PSEUDO- CP ENTRY

The ENTRY pseudo-OP is used to establish the object programis entry
poi nt when invoked as a CMD program Its syntax is:

ENTRY expression

expression Specifies an execution transfer address branch
that will be used by the system | oader

ENTRY wuses the result of "expression" as the transfer address. The use
of ENTRY will override any expression argunment on the END statenent.

Pseudo-OPs — Oigins and Val ues
2 - 25

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

Pseudo- OP EQU

Thi s pseudo- OP assigns a constant value to a label. Its syntax is:

| abel EQU nn
| abel EQU expression

expression Sets the value of |abel to the cal cul ated

I I
I I
I I
I I
| nn Sets the value of |abel to nn. |
I I
I I
| val ue of "expression” |
I I

The "EQU' (equate) pseudo-OP is the generally accepted way to define
constant values for use in your program This declaration serves a different
purpose than the data declarations such as DB, DC, and DW Data declara-
tions specify storage |locations that contain the values declared. The "EQJ
assigns the value to the |l|abel; thus, anywhere the label is used, the as-
signed value is wutilized. Your prograns will be nore readable, and easier to
maintain if the values need to be altered in a programrevision

An "EQU' can occur only once for any label. Amltiple "EQU" with dif-
ferent values will result in the MIULTIPLY DEFI NED SYMBOL error
Pseudo- OP LORG

The "LORG' pseudo-OP is wused to establish an object code file (or part

of one) that |loads at an address different fromwhere it wll execute. The
syntax of "LORG' is:

LCRG nn
LORG expression

file (or part of the file).

expression Wien eval uated, "expression”™ will be treated

I
I
I
I
nn Is the address to start |oading the object |
I
I
I
the sanme as "nn". |

I

A load-origin assenbler directive, "LORG', is provided to cause the | oad
addresses of the object file to be based on the LORG operand while the exe-
cution code address references will still be based on the "ORG' operand. This
is useful to construct a module (or part of a nodule) that will 1oad at an
address different fromits execution address. For exanple:

OCRG 5200H
LORG 7000H

Pseudo-OPs — Oigins and Val ues
2 - 26

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

will assenble code so that absol ute address references and the execution ad-
dresses are referenced from X 5200'; however, the object code file will start

loading at X 7000'. Any subsequent "ORG' wll maintain the offset difference
established at the previous "ORG' wuntil another "LORG' is detected. If you
want to switch off the offsetting operation of LORG add the statenent

LORG $
to follow the |last statenment of the offset block of code. The assenbler wl|
specifically test for the case, LORG $, so that it forces a new load block
where one is required.
Pseudo- OP ORG
The "ORG' pseudo-OP is wused to establish an address for the program

counter so that the absolute address references within a program are desig-
nated. The syntax of "ORG' is:

CRG nn
ORG expression

nn Sets the address reference counter to the
val ue "nn".

expression Wen eval uated, "expression”™ will be treated
the sane as "nn". Ternms of "expression” nust
be defined prior to the "ORG' statenent.

The "ORG' statenent is used to tell the assenbler at what address to
begin generating the object code for statenments which follow The assenbler
will generate object code starting at the address specified by "nn" or
"expression", automatically advancing the program counter by the Iength of
each instruction or data declaration assenbled. The "DS'" data declaration
advances the program counter by the amount of storage |ocations reserved.

A program can have nore than one "ORG' statenment. If multiple "ORG" are
used, and one or nore inadvertently will cause the overwite of a previously
assenbl ed nodul e of code, no warni ng nessage of any kind will be issued. It
is left up to the programmer, to protect against such events by use of con-
ditional tests (using conditional pseudo-OPs) and the "ERR' pseudo- OP.

The ORG pseudo- OP causes no code generation itself but just prepares the
assenbly process to start a new object deck record with the generation of
subsequent object code (note that if the evaluated address is one greater
than the current PC, a new object file record will not be started).

Pseudo-OPs — Oigins and Val ues
2 - 27

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

Condi ti onal Pseudo- OPs

The "conditional" pseudo-OPs provide a powerful way to maintain a pro-
gramthat is slightly different when assenbled to run on different nachine
configurations. Instead of having to maintain nultiple copies of a program
with each copy having sone routines and nodifications to make a "custont
version of the program by using the conditional pseudo-OPs, you can maintain
one set of source code that has conditional clauses which performthe " cus-
tom zation". It is very easy to specify which clauses are to be assenbled
during a particular assenbly. The structure of a conditional clause is:

I
| Fxx argunent _of I F |
code cl ause
ENDI F

I
I
I
I
I
| PRI OR TO THE EVALUATI ON OF THE "I F" STATEMENT!
I

I
|
THE OPERAND OF THE CONDI TI ONAL MJUST BE DEFI NED |
I
I

The operand of the "IF" takes on different formats depending on the

particular "IF' pseudo-OP. It can be an expression, a label, or two expres-
sions separated by conmmas. If the operand evaluates to a non-zero value, it
is interpreted as a logical TRUE condition. |If the operand evaluates to a
zero value, it is interpreted as a logical FALSE condition. When the condi-
tion is TRUE, the conditional clause between the "IF' and the "ENDIF" is
assenbled. |If "expression"” evaluates to a zero value then the conditiona

clause is not assenbled. For the sake of uniformty, use the value of "-1"

for a logical TRUE and a "0" for a logical false so that, "FALSE EQU
.NOT. TRUE" is a valid statenent. The val ues can be set in prograns as foll ows:

TRUE EQU -1
FALSE EQU 0
MOD1 EQU TRUE
MOD3 EQU FALSE
Conditional clauses can also be nested, in case conplicated |Iogica

constructs are needed or in case a conditional clause itself has a condi-
tional sub-clause. For exanpl e:

I F expressionl
I F expression2
ENDI F

ENDI F

is a tw-level conditional. Conditional clauses can be nested to sixteen (16)
| evel s although you will rarely find a need for nore than three.

The conditional construct of |IF-ELSE-ENDI F is coded as foll ows:

I F expr essi on
clause 1

ELSE

clause 2

ENDI F

Pseudo- OPs — Conditional s
2 - 28

M SOSYS Edi tor Assenbl er Version 4.Xx

Copyright 1984 M SCOSYS, Inc.

Al rights reserved

which inplies that if expression is TRUE, clause_1 assenbles. |f expression
is FALSE, then clause_2 will be assenbled. The ELSE construct is not required
in a conditional but may be used where you have an alternative clause that

can be based on one expression

As nentioned earlier, the IF argunent can take one of three fornms. The
conditional structures of these are as foll ows:

I
---Type 1--- ----- Type Il------ --Type I11-- |
| F[Xx] exp | Fxx[$] expl, exp2 | Fyy nanme |
. . . |
cl ause cl ause cl ause |
. . . |
ENDI F ENDI F ENDI F |

[x]

or 3 to eval uate based

Optional entry of 1, 2,
on the assenbl er phase during the assenbly.

Can be "LT", "EQ', or "GI" representing |ess
than, equal to, or greater than conditions
respectively when conparing "expl" to "exp2".
[$] The "$" is specified in macro conparisons wth
the expressions treated as strings (see the
section on MACRO PROCCESSI NG .

Can be "DEF", "NDEF', or "REF" representing
whet her "| abel" has been defined, undefi ned
or referenced but undefi ned.

I
I
I
I
I
I
I
I
I
I
I
| xx
I
I
I
I
I
I
I
| vy
I
I
I

Pseudo-OPs | Fx - Type

The IF1, |1F2, and I F3 conditional pseudo-COPs evaluate TRUE when the as-
sembler is on pass 1, 2, and 3 respectively. Pass 1 is the first pass used to
evaluate the value of all synmbols. Pass 2 generates the listing and cross
reference data file. Pass 2 will be omtted if -NL is TRUE and -XR is FALSE
Pass 3 generates the object code. Macros nust be read in on each pass.
EQUates nust be read in on each pass if they are the object of an |FDEF
pseudo- OP, otherwise, they can be read in on the first pass only. In the

|atter case, surround the *GET which gets the equate file with an | F1-END F.

Pseudo-OPs | Fxx - Type 11

Among the Type Il constructs, using "IFLT", if the value of expression_1
is less than the value of expression_2, then the conditional clause will be
assenbl ed. Using "IFEQ', the conditional clause will be assenbled only if
expression_1 and expression_2 have equal values. The "IFGI" pseudo-OP will
assenble the conditional clause (i.e. result in a TRUE condition) only if
expression_1 has a value exceeding that of expression_2. The |last possibility
is "IFNE", which will cause the assenbly of the conditional segnent if the
expressions are not of equal val ue.

Pseudo- OPs — Conditional s
2 - 29

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

If, for instance, you want to ensure that a program does not assenble
code past a particul ar address, then the ERR pseudo-op could be used in con-
junction with IFGT to force an assenbly error as foll ows:

| FGT $, MAXADDRESS
ERR Programis too | ong!
ENDI F

which conpares the current value of the programcounter (PC) to sone prev-
iously specified maxi num address. Once the PC exceeds this maxi numval ue, the
condition evaluates TRUE resulting in an assenbly of the segnent. The "ERKR'
pseudo-OP is used to force an assenbly error

Pseudo-OPs | Fyy - Type 11

Among the Type 11 constructs, "IFDEF name" will evaluate TRUE i f "nane"
has been defined prior to the evaluation of the | FDEF on each assenbl er pass.
"I FNDEF nanme" will evaluate TRUE if "name" has NOTI been defined prior to the
eval uation of the |FNDEF on each assenbler pass. "IFREF name” wll evaluate
TRUE i f "name" has been referenced but NOT defined prior to the evaluation of
the | FREF on each assenbl er pass.

The Type 111 constructs wll find greater use when working with source
libraries of code. For instance, if a clause is a routine that is surrounded
with an | FREF-ENDIF conditional, the routine will only be assenbled if prior
to the segnent, the "name" has been referenced but not yet defined. If "nane"
is the entry point synmbol to the routine, then the routine will be assenbl ed
if it is needed. Simlarly, you may have a library routine that is always to
be placed in your programunless its "nane" has already been defined in sone
alternate routine. Surrounding it with the | FDEF-ENDIF conditional wll in-
hibit its assenbly if your program has defined that nane.

Suppr essi ng FALSE Conditional s

If during the listing pass, you want to suppress the listing of certain
conditional <clauses that are not assenbled (i.e. they are evaluated as
FALSE), use the foll owi ng sequence of operators:

*LI ST OFF

I F expr essi on
*LI ST ON

code cl ause

*LI ST OFF

ENDI F

*LI ST ON

Wth this sequence, the "IF' and "ENDIF" lines will always be suppressed. The
conditional <clause wll only be listed if the condition being evaluated is
logically TRUE. If no FALSE conditional clause is to be listed, then you nmay
use the assenbler "-NC' switch which inhibits the listing of all FALSE con-
ditionals - including the | F-END F statenents.

Pseudo- OPs — Conditional s
2 - 30

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

Pseudo- OP ENDI F

Each "I F' statenent nmust be matched up with a corresponding "END F*. The
"ENDI F' is needed to define the scope of the conditional clause.
Pseudo- OP COM

This pseudo-OP is used to generate a comment record in the object code
file. Its syntax is:

I I
| ©COM <string> |
I I
| <string> Is the information to be placed as a conment. |
I I

An object file comment record can be generated within the executable ob-
ject code file directly by using the "COM pseudo-OP. The comment string nust
have a length less than 128 characters. As can be noted, the comment string

must be encl osed in angle brackets. The closing bracket may be omtted. |If
| ower case characters are desired, then single quotes must surround the angle
brackets. Neither the quotes nor the angle brackets will be part of the com

nment record.

The "COM' pseudo-OP will generate a coment record in the object file of
the format X 1F followed by the string length, followed by the string it-
self. Atypical use would be to place a non-|oading copyright statenent in an
execut abl e obj ect code file. For exanple:

COM ' <Copyright (c) 1982 by Roy Soltoff>

will produce the coment record which would be viewed if the file were
listed.

The generation of the "COM object code record wll be inhibited if the
assenbly is performed wusing the "-CI" switch. A binary core-inmage file can
not have a non-I|oadabl e record.

Pseudo- OP ERR

The "ERR' pseudo-OP is used to force an assenbly error. Its syntax is:

I I
| ERR {nmessage} |
I I
| nessage is an optional message to informwhat is wong. |
I I

This pseudo-OP forces an imediate warning error and displays the
optional message. It is conmonly wused in a conditional clause for error trap-

pi ng.

Pseudo- OPs — M scel | aneous
2 - 31

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

Pseudo- OGP OPTI ON

This pseudo-OP is wused to alter the state of any of the assenbler
swi tches entered on the command |ine invoking the assenbly (either via MAS or
the "A" conmmand of EDAS). Its syntax is:

I
CPTION {-/+}switch{,-/ +switch}, ... |

I
|
| -/+ An optional prefix to turn the switch OFF or ON
I
I
I

I

I

I

switch Any of the perm ssible assenbler sw tches. |

I
Prefix each switch with "-" to turn OFF, or "+" to turn ON (i.e. +NL
suppresses the listing - sets the NOLISTING switch to TRUE). If "+" is

omtted, it is assumed. The COMVA separator is mandatory if you omt the "+".
OPTI ON swi tches over-ride command |ine swtches.

The OPTION pseudo-OP is only processed during the first pass; therefore,
you cannot use it to dynamically switch options ON and OFF during an assem
bly. It is wused to conveniently set options specific to a source stream to
elimnate the need for their entry on the assenbl er command |i ne.

Pseudo- OP REF

REF may be used to force a reference to the synbols identified in the
argunment list. Its syntax is:

I I
| REF synbol 1{, synbol 2}, . .. |
I I
| synboln A "nanme" to be force-referenced. |
I I

This function may be useful to force references to nmacros so that they
may be | oaded via a ' *SEARCH operation.

Pseudo- OPs — M scel | aneous
2 - 32

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

Li sti ng Pseudo- OPS

Four pseudo-OPs are available to control the assenbler listings. These
are: PAGE, SPACE, SUBTTL, and TITLE. Their syntax is:

PAGE

SPACE n

SUBTTL {<string>}

TITLE <string>

n Specifies how nmany line feeds to generate.

<string> Is the title or sub-title string to appear in

I
I
I
I
I
I
I
I
I
I
I
I
| the listing headings.
I

A new page can be forced to provide separation of routines, nodules,
etc. by using the "PAGE"' pseudo-op. This pseudo-OP will be ignored if it ap-
pears between *LIST OFF and *LI ST ON. PAGE statenents are automatically sup-
pressed fromthe Ilisting. PAGE wll output the form feed character only
during the listing pass.

"SPACE n" performs |ine spaci ng whenever the "SPACE' pseudo-OP is used.
VWen assenbled, "n" is the nunber of Ilines to space and is interpreted as
modul o 256. The |I|ine containing the SPACE pseudo-op is not displayed. This
pseudo-op also will be ignored if it appears between *LI ST OFF and *LI ST ON.

A heading sub-title is requested with the "SUBTTL" pseudo-OP. The sub-
title string can be up to 80 characters long. A NULL length indicates that
sub-titling is disengaged. The SUBTTL string does not need to be enclosed in
angl e brackets; they are optional. SUBTTL autonatically invokes a PAGE. Lower
case strings can be maintained by surrounding the brackets with single
guotes. You may change the subtitle by using "SUBTTL" pseudo-OPs throughout
the text. If the "SUBTTL" text string is null, then subtitling will cease on
t he subsequent page. A line will also be skipped between the subtitle and
first printed text line on the page.

The "TITLE" pseudo-OP automatically invokes a page heading and adds the
title to the headings of assenbler listings. The first "TITLE'" pseudo-OP
found in the text will be used for titling. Any other "TITLE' pseudo-OPs will
be ignored. The title stringis limted to 28 characters. The left and right
carets (angle brackets) must be entered but are not output in the listing -
they serve only to delimt your title string. The title line will include the
EDAS version, the date and tinme retrieved fromthe system your title string,
and a page nunber [page nunber is limted to the range <1-255> and will wap
around to zero if nore than 255 pages are printed]. Aline will be skipped
between the title and start of printed text (or subtitle if used). Lower case
titles will be maintained by surrounding carets with single quotes as in:

TI TLE '"<This is an UC/ lc title>

Pseudo- OPs — M scel | aneous
2 - 33

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

Assenbl er Directives

The M SOSYS Editor Assenmbler Version 4.x, supports five assenbler com
mands. |In contrast to source statements which are translated to nachine
| anguage, these directives are "conversation" to the assenbler. Each directs
the assenbler to behave in a particular nmanner or performa specific func-
tion. The directives, by thenselves, do not generate any machine |anguage
code - they nmerely act as "comrands"” to the assenbler. Each "conmmand" nust
start in colum one of a source statenment line, and nust start with an
asterisk (*). Only the first character of each directive is significant. The
entire directive "word" may be entered, or the directive may be abbreviated
toits first character. The assenbler directives are:

I
*CGET file Causes the assenbler to begin readi ng source

code fromthe "file". |

I

I

* | NCLUDE Sane as "*CGET" for EDAS; works in concert with
"+]=fil espec” for NAS. |

*LI ST OFF Causes the assenbler listing to be suspended,
starting with the next I|ine.

*L1I ST ON Causes assenbler listing to resune, starting
with this |ine.

string and optionally sets/resets the prefix.

*SEARCH |lib I nvokes an automatic search of the Partitioned
Data Set (PaDS) "lib" to resolve any undefined
ref erences capabl e of being resol ved by PaDS
assenbl er source nenber nodul es.

I
I
I
I
I
I
I
*MOD exp Advances the "nodul €' character substitution |
I
I
I
I
I
I
I

*CGET fil espec

This directive invokes assenbly froma source disk file. Its syntax is:

*CGET fil espec

code fromthe file, "fil espec”

I
I
I
| filespec Causes the assenbler to begin readi ng source
I
I

This directive tells the assenbler to tenporarily switch its source as-
senmbly to the file identified as "filespec", and use it to continue the as-
sembly. A default file extension of "/ASM wll be wused if none is provided
inthe directive statement. The file itself can be headered and/or nunbered,
as the assenbler will automatically detect its type and adjust accordingly;
however, all nested *GETs nmust be simlarly configured. Wen the end-of-file

Assenbl er Directives
2 - 34

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

is reached, or an assenbly |anguage "END' statement is read, assenbly auto-
matically resunes from the next statement following the statenent which
i nvoked the "*GET". Any "END' statenent read during the *CGET process will be
i gnored as the programend. The only "END' accepted will be that in the text
buffer (or the source file identified on the command line in the case of a
MAS assenbl y).

"*CGETs" can be nested to five (5) levels. That is, a source statenent
can GET a file which CETs a file which CETs a file which GETs a file which
CGETs a file. This assenbler directive is extrenely powerful. It can be used
to provide the capability of assenbling |arge prograns which are stored on
disk in nodules, since nore than one *GET may be in the text buffer or
"gotten" file.

The text buffer can be conposed of nothing but *GET statenments (and one
END statenment) which will provide nmaximumspace in the text buffer for gen-
eration of the synbol table. For exanple, the follow ng could represent the
source |inkage needed to assenble a program call ed "PARVD R/ C\VD":

; PARMDI R/ ASM - 04/ 07/ 82

* =k —%
)

; Li nkage to assenbl e PARMDI R
* —k —%
*CGET PARMDI R1
*CGET PARMDI R2
*CGET PARMDI R3
END PARMDI R

*] NCLUDE fil espec

This directive is wused to insert a subordinate source file into the in-
put stream Its syntax is:

I I
| *I'NCLUDE {fil espec} |
I I
| Sanme as "*CET" for EDAS; works in concert with |
| "+]=fil espec” for NMAS. |
I
I
I
I

I
filespec Causes the assenbler to begin readi ng source |
code fromthe file, "filespec". |

I

In the EDAS macro assenbler, "*INCLUDE' operates exactly like "*GET". It
is totally equivalent in operation.

VWhen used with the MAS macro assenbler, "*INCLUDE" is used to "get" the
file identified on the MAS command line with the "+I1=filespec" redirection
specification. Wth MAS, this is useful to effect the inclusion of a speci-
fied file in the input streambased on your command |ine option. Note that
for use with MAS, there should be only one "*I NCLUDE' within your input file
stream

Assenbl er Directives
2 - 35

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

LI ST OV CFF

This directive is used to suppress the listing of blocks of code. Its
syntax is:

*L| ST of f/on

I I
I I
I I
| OFF Causes the assenbler listing to be suspended, |
| starting with the next statenent. |
I I
I I
I I
I I

N Causes assenbler listing to resune, starting
with this statenent.

The pair of directives, "*LIST OFF' and "LIST ON', can be used to sup-
press the listing of a block of code. Once the "*LIST OFF" is invoked, all
statements following will not be listed to the display or the line printer
(if assenbler switch -LP is specified). The directive "*LIST ON' re- estab-
lishes standard listing. An exception to the suppression is that any assem
bl er source statenent containing an assenbly error will be listed along with
its appropriate error nessage. In this manner, you can use an "*LIST OFF"
directive at the beginning of your assenbly source (to suppress all 1isting)
and lines containing errors will be forced to be displayed by EDAS.

Sone exanples illustrating use of the *LIST directive are:
*LI ST OFF
DB 'This line will not be displayed!'’
*LI ST ON
*LI ST OFF
DB '"Only the next line will be displayed!"
LD (M 100
*LI ST ON

*MOD expression

This directive is used to increnent a character substitution string for
t he purpose of simulating |ocal labels. Its syntax is:

*MOD

string.

I
I
I
| Advances the "nodul e" character substitution
I
I

The "*MOD' directive will increment a string replacenent variable each
time the directive is executed. The string wll replace the question nark,
"?", character in labels and |abel references found in any I|ine assenbled

Assenbl er Directives
2 - 36

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

froma *GET or *SEARCH file. Its use is essentially applicable to subroutine
libraries where duplication of I|abels could occur. By specifying the "*MXD'
directive as the first statenent of each nodul e of code and by using a ques-
tion mark in |abels, you can construct source subroutine libraries for use in
your prograns w thout having to worry about duplicate |abels occurring. Unless
at least one "*MOD' statement is specified, the question mark will not be
transl at ed.

Label s such as $?001 wll have the "?" replaced with the current "MD"
string value. Thus, a "*MOD' directive preceding each nodule will force $?001
| abels in each nodule to be distinctly naned by having the question mark re-
pl aced with the substitution string.

The | abel substitution automatically generates up to a three-character
string: A ..Z AA ..ZZ AAA ..ZZZ. The "MD" string value cycles fromA-Z

then fromAA-AZ, BA-BZ, ..., ZA-ZZ, then from AAA-AAZ, ABA-ABZ, ... etc. This
will allow for a simulation of "local" |abels. Remenber, the "?" substitu-
tions will only be nade to those source lines fetched froma *CGET or *SEARCH

file, not fromstatements resident in nmenory! It really was designed that way
folk's, it's not just a limtation.

If you need nore than the 18278 wunique string values generated by a
single/dual/triple alphabetic string (26*26*26+26*26+26), you wll probably
have to nove to a machine with nore nmenory, as there wouldn't be enough room
in the synbol table to adequately make use of the current maxi mum

*SEARCH fi |l espec

This directive is used to invoke an automatic search of a Partitioned
Data Set (PaDS) source library. Its syntax is:

*SEARCH fi |l espec

"filespec/LIB" to resolve any undefined
ref erences capabl e of being resol ved by

I

I

I

| filespec Il nvokes an automati ¢ search of the PaDS
I

I

| PaDS assenbl er source nenber nodul es.

I

Thi s assenbl er "*SEARCH fil espec” directive is a very powerful feature.

It will invoke, a directory search of the Partitioned Data Set "fil enane/ LI B"
for all menbers that will resolve undefined references in the source assem
bly. This provides a source library structure for the assenbler. "*SEARCH'

will require two (2) levels of "*GET" nesting. Also, restrictions prevent a
"*SEARCH' menmber fromusing a "*CGET" directive or another "*SEARCH' direc-
tive. The library menbers nmnust be |owest level. The default file extension
for searched files is "LIB".

The PaDS source library constitutes nmenbers conposed of one or nore
routi nes. Each routine that needs to be automatically fetched should have its
routine name (the label field entry) in the PaDS nmenber directory. This is
acconpl i shed by nam ng the source file to be appended to the library the sane

Assenbl er Directives
2 - 37

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

nane as the routine or by appending using a MAP. Details on constructing and
using Partitioned Data Sets is included wth PaDS docunentation. The PaDS
utility is avail able separately.

The assenmbler will search the PaDS library and | ocate a nmenber nane that
matches up with a synbol table entry. If that symbol is currently undefined,
the source menber will be accessed and read just as if it were the target of
a "CGET". The assenbler will verify that the menber just accessed did in fact
define the synbol invoking its access. If a mnmenber is accessed and there
exists no synbolic label in the menber that has the sane nane as the nenber
nane, the assenbler will abort the assenmbly and advise of a library error by
di spl ayi ng the message:

Menmber definition error: fil espec(nenber)

At the conclusion of the nenber's source code, the assenbler will con-
tinue to search the PaDS library until it exhausts all PaDS nenbers. There
are no restrictions on the order of menbers. Routines in one nmenber can re-
ference other menbers wth conplete disregard as to any ordering of entries
in the PaDS. The assenbler will correctly access all nmenbers required.

Wiere nore than one routine is in a menber, each should be surrounded
by | FREF' s/ ENDI F and each should have an entry in the nmenber directory (you
must use the MAP option of PaDS to provide nultiple entries to a nenber).
This will benefit by not having needl ess routines appear in your object code
out put. For example, the follow ng depicts two routines stored as one nenber
in a PaDS.

; Entry for routine entitled "MWE"

| FREF MOVE

MOVE . ; Routine of code
ENDI F

; Entry for routine entitled "SH FT"
| FREF SHI FT

SH FT . ; Routine of code
ENDI F

If your source code references "SH FT" but not "MOWE', as long as both

"SH FT* and "MOWE' are nenber entries in the Ilibrary PaDS directory, a
"*SEARCH' of the library will access the nmenber and assenble only the "SH FT"
routine. You should read the section on the "IFREF" conditional in the chap-
ter on ASSEMBLER PSEUDO- OPS to understand the eval uation of the "I FREF"

Finally, it should be obvious that the "*SEARCH filespec" directive
shoul d appear in your source code near the end of the source (i.e. after al
references to nodules in the PaDS |ibrary have occurred).

Assenbl er Directives
2 - 38

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

VWhat is a MACRO?

In virtually all prograns, you find particular sequences of code that
are repeated. These sequences may be ternmed routines. They could be so short
that the overhead needed to set themup as CALLable routines is ineffective.
O, they could be longer routines that just cannot be constructed as CAlLLabl e
segments. You nmay even want a code sequence to be an in-line assenbly in
contrast to a CALLable routine for the purpose of fast execution. The nost
useful functionis to be able to have paraneterized routines - algorithns
that operate on different values each tine the algorithmis invoked.

There are a fewways to deal with routines that are repeated in a pro-
gram You could block copy it fromthe first appearance to wherever you
needed the routine. O you could establish the routine as a macro. The first
met hod could take up nore source storage than is desirable. Al so, if you de-
cide to change the routine's algorithm having many copies in a program can
be cunbersone to update.

The second method nmentioned is the use of nacros. Consider the follow ng
conmonpl ace sequence of code:

LD HL, VALUE
LD (MEMORY) , HL

How many times is this little sequence repeated in your prograns? Five? Ten?
If we set up a nmacro near the beginning of our programthat |ooked sonething
i ke this:

STOR MACRO #VAL, #VEM ;Macro to store "VAL" into nenory
LD HL, #VAL ;Get value into HL
LD (#MVEM) |, HL ; Load val ue into nenory
ENDM ; End of the macro

we could performthe above two statenents with one macro call as foll ows:
STOR VALUE, MEMCRY ;I nvoke the nacro

The first part of the example, defines a macro called "STOR'. This is done
exactly once per programi If we save our macros in a macro source file, each
of our progranms could "*GET MACRCS'; thus, we would not have to even manual ly
enter the macro into each program

W invoke the statenents defined in the macro by specifying the macro
nane AS IF IT WERE AN OPCODE. Using the macro invocation method, we can save
storage space and introduce structured techniques to our coding. Notice that
we have used sone fictitious nanes when the STOR macro was defined. These
nanes are called "dummy" paraneters. They serve to provide a means to pass
actual paraneters when the macro is invoked. Through the dummy paraneters,
the real power of the macro is wutilized. During the macro invocation, the
nodel statenments are expanded with substitutions for the dumry paraneters
that are provided in the macro call.

Macro Processing and Usi ng Macros
2 - 39

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

MACRO Definition

The format for a macro definition is illustrated as:
I I
| MOVE MACRO #par ni, #par n2=df | t 2, #par n8 |
| LD HL, #par ml |
| LD DE, #par n? |
| LD BC, #par n8 |
| LD R |
| ENDM |
I I

The macro definition consists of three parts: a nacro prototype, a macro
nodel, and the ENDM statenent. The prototype is used to specify the macro
nane and the dummy paraneter nanes used in the nodel. Default substitutions
may be specified in the prototype to be used if the correspondi ng paraneter
is not passed in the macro invocation. The macro nodel contains all of the
assenbl er statements to be generated when the macro is invoked. The nodel is
sometimes called the macro skeleton or tenplate. The dummy paraneter names
occupy the positions where the actual paranmeters will be placed by the macro
processor in EDAS. The third part, the ENDM statenment, is used to indicate
the end of the macro nodel

VWen a macro is defined, it is not assenbled into your program The
macro prototype is parsed and analyzed. The macro definition is then stored
in a conpressed format w thin the macro storage area. Conments appearing with
the macro definition are not stored if the comment starts with a double
sem -colon in lieu of a single one. Comments wth a single sem-colon are
thus carried through a macro expansion to the |isting.

Macro definitions may be nested. The inner macro will not becone defined
until the outer macro is expanded during an invocati on. However, since nacros
cannot be redefined, the outer macro should be invoked only once!

Macro Prototype

Macros are naned just |like synmbolic |abels. The same rules apply. The
nunber sign "#" is wused to denote a parameter in the macro prototype; how
ever, its use is optional. It is still required in the macro nodel to indi-
cate the start of a parameter nane. The length of nmacro nanes can range from
<1-15>. Special characters <@ $, _> nmay be wused in the nanme construct. Do
not use the question mark in macro nanes as it would conflict with the synbol
substitution string use nmade of "?".

Macro Processing and Usi ng Macros
2 - 40

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

The MACRO pseudo-OP is used to define the prototype of a nmacro nodel
Its syntax is:

manme MACRO {#parml}{=dflt1}{, #parn{=dflt2}}{,...}
mane is the macro nane used to i nvoke the macro.

I I
I I
I I
I I
I I
| #parm are dummy paraneters of the macro which wll |
| be repl aced by actual paraneters during the |
| macro invocation. "#" is an optional prefix. |
I I
I I
I I
I I
I I

dfl'tn are optional default strings to be used for
the dummy parameters when a parameter is not
provided in the macro invocation

The wupper limt on the nunber of macro paraneters is 127; however, you
can not exceed the length of a standard assenbl er source statenment. Thus, the
statement length becones the limting factor. As is the case wth nacro
nanes, the rules for namng dunmy paraneters are identical to the rules for
labels. If a macro paraneter is enclosed in angle brackets, the entire string
which is enclosed within brackets will be treated as one paraneter - even if
it contains separator characters. Neither the macro names nor the "dummy"
nanes are included in the synbol table generated by EDAS, thus there is no
restriction on reusing the sane name as a "dummy” for a |abel; however, to
avoid confusion, it is recomended that you avoid using dummy names as sym
bolic | abel nanes.

Default strings can contain any character except the comm, ",". The
conma is used as a field delimter. There is no limt to the length of a de-
fault string other than the limting factor of the statenment |ength.

Macros nust be defined prior to use but can be defined in a separate
disk file accessed via a "*CGET fil espec”.

MACRO paraneters are acceptable within a quoted string if prefixed by an
anpersand. i.e. TEST DB ' &#NAVE . See the foll owi ng exanple.

5200 00002 FEED MACRO #STRI NG
5200 00003 $71 JR $7?2
5200 00004 LABEL? |IRPC XX, #STRI NG
5200 00005 LABXX DB " &XX
5200 00006 | FGT $- LABEL?, 3
5200 00007 EXI T™M
5200 00008 ENDI F
5200 00009 ENDM
5200 00010 $?2 LD HL, LABEL?
5200 00011 ENDM
5200 00012 FEED 012345
5200+1806 00013 $A1 JR $A2

00014 LABELA [|IRPC XX, 012345
5202+ 00015 LABXX DB " &XX
5202+ 00016 | FGT $- LABELA, 2

Macro Processing and Usi ng Macros
2 - 41

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

5202+ 00017 EXI T™M
5202+ 00018 ENDI F
5202+ 00019 ENDM
5202+30 00020 LABO DB "0
00021 | FGT $- LABELA, 2
00022 EXI T™M
00023 ENDI F
5203+31 00024 LAB1 DB "1
00025 | FGT $- LABELA, 2
00026 EXI T™M
00027 ENDI F
5204+32 00028 LAB2 DB ‘2
00029 | FGT $- LABELA, 2
00030 EXI T™M
00031 ENDI F
5205+210252 00036 $A2 LD HL, LABELA
0000 00037 END
Macr o Model

Any valid Z-80 statenent, EDAS pseudo-CP, or assenbler directive (except
*GET or *SEARCH) is valid in the macro nodel .
ENDM pseudo- OP

Thi s pseudo-OP is used to specify the scope of a nmacro nodel. It is used
much like ENDIF. Its syntax is:

I I
| manme MACRO parns |
| nmodel statenents |
| ENDM |
I I

The ENDM pseudo- OP nust be used to let the macro processor know what is
the | ast macro nodel statenent. |If macros are nested, each nust have an ENDM

EXI TM Pseudo- OP

Thi s pseudo-OP can be used to prematurely exit from a MACRO expansi on.
This is normally used wthin a conditional clause. One |evel of conditional
nesting will be renoved (if any are present). See the exanple for IRP.

Macro Processing and Usi ng Macros
2 - 42

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

Macro Definition Exanples

This macro will rmove a block of nmemory fromone I|ocation to another. If
the "l ength" parameter is omtted, then a value of "255" will be used:

MOVBLK MACRO #FM #TO, #LEN=255

LD HL, #FM
LD DE, #TO
LD BC, #LEN
LDl R

ENDM

This is a macro to clear a region of nmenory (i.e. set to 0). This macro
wi Il invoke the MOVBLK nmacro in a nested invocation:

CLRMVEM MACRO #BUF, #LEN=255

LD HL, #BUF

LD (HL), 0

MOVBLK #BUF, #BUF+1, #LEN
ENDM

This macro will add the 8-bit register "A" to 16-bit register pair "H.":

ADDHLA NMACRO
ADD A

LD L

ADC A
L

H

T>r

SUB
LD
ENDM

>

A macro is not required to contain dumy paraneters as is evidenced by the
| ast exanpl e.

I ncor porating Conditionals

Condi ti onal pseudo-OPs can be specified in macro nodels. For instance,
say you want the MOVBLK nacro to be able to performa non-destructive nove (a
destructive nove woul d be where the destination is an address between "fronf
and "fromtlength-1"). You can insert conditional pseudo-OPs to test the
paraneters during the assenbly of the expansion. Don't forget that the actual
| abel s substituted for parameters nust be defined prior to invoking the
MACRO Then, only certain segnents of the macro wll be assenbled according
to the result of the evaluation. Analyze the follow ng exanple:

MOVBLK MACRO #FM #TQO, #LEN=255

| FNE #FM #TO ;Don't expand if #FM=#TO
LD BC, #LEN ; Establish the length

| FGT #FM #TO ;Do we LDIR or LDDR?

LD HL, #FM ; #FM > #TO => LDIR

LD DE, #TO

LD R

ELSE

LD HL, #FMH#LEN- 1 ; #TO > #FM => LDDR

Macro Processing and Usi ng Macros
2 - 43

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

LD DE, #TO+#LEN- 1
LDDR

ENDI F

ENDI F

ENDM

MACRO Nest i ng

The CLRVMVEM exanpl e depicts a macro that nests a macro invocation. Macros
may be nested to seven (7) levels. That is, at any tine, macro expansions for
7 macros called in a chain can be pendi ng. For exanple:

ABC MACRO #PARMS, . . .
(nmodel st at enents)

MOVE parm parm ;call macro "MWE"
(nmodel st at enents)
ENDM

MOVE MACRO #par i, #par n2, #par n8
(nmodel st atenents)
ENDM

is perfectly legal. The expansion of the "MWE" nmacro is not performed during
the definition of the "ABC' nmacro but rather during the invocation of "ABC'.

Macro definitions also may be nested. The inner nmacro wll not be de-
fined until the outer nmacro is expanded. For instance:

ABC MACRO #PARM
(nmodel st at enents)
XYZ MACRO #PARMs, . . .
(nmodel st at enents)
ENDM
ENDM

is a legal nmacro definition. The inner macro (XYZ) will not be defined until
the outer macro (ABC) is invoked. Note the two ENDM st atenents.

If macro A "calls" another macro, say B, any dunmy paraneter in the
macro call of B that matches a dumry in macro A, will be considered part of
macro A and the paranmeter substitution wll be invoked by the paraneter
passed when the user calls macro A

MACRO | nvocati on

The invocation of a macro is termed a macro "call". The macro processor
then proceeds to replace the call with the nopdel statenents specified when
the macro was defined. The replacenent of the macro call by the macro nodel
statements is termed the nacro "expansion".

During the expansion, the "actual" parameters passed in the call state-
ment are substituted for the "dunmy" paraneters which appear in the macro
nodel and which are designated in the prototype of the macro. Note that the
actual paraneter values are character strings and can be | abels, expressions,

Macro Processing and Usi ng Macros
2 - 44

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

or data constants. An actual paraneter can even be a quoted string data de-
claration if its use is designed into the macro nodel

The entire expanded macro nmodel is listed during the listing pass (phase
two). Macro expansions inthe listing will be so noted by the appendage of a
plus sign inmediately following the Iine nunber displayed. You nmay find that
you don't really want to see these expansions since the macro definition
contains the entire illustration of the macro. An assenbler switch, "-NM is
provided to suppress listing of macro expansions. In the case of nested macro
calls (i.e. a macro is defined which calls another macro which was separately
defined), only the primary macro call will be listed if the "suppress” swtch
i s invoked.

The substitution of the actual character string paraneters for the
dunmys occurs during the nacro expansion when the macro is called. Since a
macro can have nore than one parameter, it is necessary to have a procedure
that specifies which actual paraneter corresponds to each dummy paraneter
There are two nethods supported in EDAS. Paraneters can be passed to the
macro expansi on when calling by either position or keyword.

Positi onal Paraneters

"Positional" parameters are correlated by the position they appear in
the macro call. For example, if the "MOBLK' macro was called wth:

MOVBLK VI DEQ, CRT_BUFFER, CRT_SI ZE

then the substitution string "VIDEO" woul d repl ace every appearance of "#FM
the string "CRT_BUFFER' would replace every appearance of "#TO', and
"CRT_SIZE'" would replace the dunmy paraneter, "#LEN'. Note that actua
strings are positionally <correlated with the positions of the dumy para-
nmeters in the nmacro prototype.

If you wish to omt an actual paraneter in a macro call, then you nust
supply the conma to denote its place. For instance:

SHI FT 4200H, , 100H

omits the mddle of three paraneters. Cenerally, a default would have been
provided in the macro definition

Keyword Paraneters

If the nunber of paraneters is large, it is sonmetines burdensone to re-
menber the order of the paraneters, or to provide the correct nunber of
conmas if a series of paraneters are omtted. These drawbacks are renedi ed by
the use of "keyword" paraneters. The nmacro call parameter list can identify
the actual paranmeters by using the nane of the dummy paraneter as well. The
keyword syntax is:

Macro Processing and Usi ng Macros
2 - 45

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

#dumy=act ual paraneter |

mame #par nR=act ual 2, #par nB=act ual 3 |

If the previous macro call was invoked by keyword paraneter specifi-
cation, it could | ook something like this:

SHI FT #LEN=100H, #FM=4200H

M xi ng Positional and Keyword Paramneters

A single macro invocation can intermx both positional and keyword

paraneters. The point that needs clarification, is what positions are actu-
ally denoted in the paraneter list. It is sinply treated. In a mxed para-
meter list, keyword parameters are ignored when considering place positions.

For exanple, in the follow ng nacro call
SH FT #LEN=100, BLOCK, BUF_START
even though the length paraneter appeared first in the paraneter list, since
it was designated as a keyword, it is ignored fromthe positional count and
"BLOCK" is the first parameter with "BUF_START" second. In a sinmlar manner
COW PARML, #P6=2, , PARMB, #P8=38, PARV4
"PARML" is in position one, the second paraneter is onmtted (the double com
ma), "PARMB" and PARMA" are in the third and fourth positions respectively.
The sixth and eighth paraneters have been entered by keyword.
Note that the parameter 1list contains five parameters. Thus if you were

to use the "9%% operator which returns the nunber of paraneters passed in a
macro call ("9%#% is described later), it would return a value of five.

Local Label s

So far, all of the exanples have shown macro nodels without |abels. \Wat
woul d happen if we had a macro defined as foll ows:

FI LL MACRO #CHAR, #NUM

LD B, #NUM
FLP LD (HL) , #CHAR
INC H
DINZ FLP
ENDM

W woul d have a probl em because every tinme the macro was called, the |abel
"FLP*, would be wused. If "FILL" was invoked nore than once, the assenbler
woul d generate MILTI PLY DEFI NED SYMBOL errors on each expansion. W have to
be able to use labels, but we need to find a way to be able to make "uni que"
| abel s on each macro expansion

Macro Processing and Usi ng Macros
2 - 46

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

EDAS provides a facility for doing this by keeping a substitution string
which is changed each tine a macro is expanded. The string replaces the
guestion mark character, "?", during a macro expansion whenever it appears
outside of single quotes in a nacro nodel statenent. Each time a macro is

expanded, the string wll be changed. The string starts wth the single
letter "A", changes to "B', ..., "Z", then increnents to the two-letter
strings, "AA', "AB', ..., "ZZ', then to three letter strings, AAA-ZZZ each
time a macro call is nmade. By wusing the question mark as one of the
characters in synbols of a macro nodel statement, it will uniquely identify

labels local to a macro. You may want to standardize the way you create
| abels to ensure that wuniqueness is maintained. For exanple, you may use
macro |abels of the form "$$?1", "$$?2", ... You can repeat the use of
"$$71", "$$?2", ... in another macro since the substituted string will be
uni que for each macro expansi on.

The substitution string will be different fromthe *MOD directive sub-
stitution but is simlarly used. Macro expansion substitution of "?" takes
precedence over *MOD substitution. In the case of nested nacros, each nest
level will have its own unique substitution

By using the question mark string substitution specifier, the previous
macro woul d be defined |ike this:

FI LL MACRO #CHAR, #NUM

LD B, #NUM
$$?1 LD (HL) , #CHAR
INC HL
DINZ $%$71
ENDM

String Conparisons

It is sonetinmes desirable to be able to test wthin a macro nodel, the
exact string passed as a paraneter. Four conditional pseudo-OPs have been
added strictly for string conparisons within macro processing. These are:

I | FLT$ stringl, string2 TRUE if stringl < string2 I
I | FECS stringl, string2 TRUE if stringl = string2 I
I | FGT$ stringl, string2 TRUE if stringl > string2 I
i | FNES$ stringl, string2 TRUE if stringl <> string2 i

These pseudo-OPs provide TRUE/ FALSE evaluation in the conparison of
stringl to string2 (like the non-"$" pseudo-OPs do with mathematical expres-
sions). Qoviously, hard encoding of both stringl and string2 would be non-
sense! Aha, he said... If we use a macro dummy paraneter, it will be substi-
tuted by the actual paraneter string passed in the macro call expansion. This
means that the macro itself can test the paraneter string in alimted man-
ner. For exanple:

Macro Processing and Usi ng Macros
2 - 47

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

|FNE$ #TO (DE)
LD DE, #TO
ENDI F

as part of a macro nodel, will have the "#TO' replaced during the expansion.
The test becomes dynamic! The dummy paraneter can be either stringl or
string2 - it doesn't matter.

These string conditional pseudo-OPs can only be useful in macros. That's
because the evaluation, to nake sense, has to be dynamic.

Testing String Lengths

Anot her feature available in the macro processor is the per cent sign
"08 operator. This operator is used to recover the length of the passed
paraneter string and the nunber of parameters passed in the macro call. Note
that the limtation for the use of the "% operator, is that it is acceptable
only for paraneters of the current macro expansion. That neans that you can't
test for lengths outside of the current macro if you are nesting macro calls
(macros cannot be recursive!). The operator can be used like these exanpl es:

LD B, %tPARM ;1loads B with the | ength of #PARM

| FGT %#PARML, 6 ;Restricts parnl to a |l ength <1-6>
ERR Parmtoo | ong!

ENDI F

| FLT %44 ; This macro requires 4 actual parns
ERR M ssing required paraneters!

ENDI F

The "9%86 operator will return the nunber of paranmeters passed in the current
Macro call. Wen a dumy paraneter nane (including the "#" prefix) follows
the per cent operator, the length of the parameter string is returned.

These val ues can be tested arithnetically to produce a TRUE/ FALSE result
(as was just denonstrated), or they can be used directly to represent |ogic
TRUE/ FALSE conditions. Realizing that if a paraneter was not passed in the

paraneter list of the macro call, its length would be zero. A zero is also a
| ogical FALSE. EDAS will accept as TRUE, any non-zero value (in normal use of
TRUE/ FALSE specifications, "-1" is recommended for TRUE to nmaintain proper
evaluation of the ".NOI." operation). Thus, the string |lengths can be mni-

mally used to test if the parameter was not passed (%tpar m=0=FALSE) or the
par anet er was passed (%tpar nx>0=TRUE) .

Macro Processing and Usi ng Macros
2 - 48

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

Concat enati ng MACRO Label s

You can concatenate a string to a dumtmy paraneter nane by connecting it
with the concatenation operator, "%". For instance, the nodel statenent:

| FREF #NAVEY&L

wi Il have the "#NAME' replaced by the MACRO call substitution string appended
with the letter "L".

Speci al in-line MACRGCs

EDAS supports the standard |INTEL nacro operations of REPT, IRPC, and
| RP. These macro operations i medi ately expand the nodel statenents according
to specifications in the nacro prototype statement. They may also be an
interior macro of a nested nmacro definition.

Macro REPT

The statenments within REPT-ENDM are repeated according to the result of
"expression". The syntax of this macro is:

| abel REPT <expression>
statenents
ENDM

In the prototype statenent, the angle brackets are not required. See the
foll ow ng exanpl e which generates values from1 through n where "n" is con-
trolled by the val ue passed as "#COUNT" in the DA T invocation.

5200 00002 DA T MACRO #COUNT

5200 00003 T DEFL 0

5200 00004 REPT #COUNT

5200 00005 T DEFL T+1

5200 00006 DB T

5200 00007 ENDM

5200 00008 ENDM

5200 00009 DO T 3

0000+ 00010 T DEFL 0
00011 REPT 3

5200+ 00012 T DEFL T+1

5200+ 00013 DB T

5200+ 00014 ENDM

0001+ 00015 T DEFL T+1

5200+01 00016 DB T

0002+ 00017 T DEFL T+1

5201+02 00018 DB T

0003+ 00019 T DEFL T+1

5202+03 00020 DB T

Macro Processing and Usi ng Macros
2 - 49

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

Macro | RPC

The statements within |RPC ENDM are repeated for each character in the
character list while the "identifier” is replaced with each character in turn
from the identifier list. The identifier can be a nulti-character string
which is not a reserved word. This macro's syntax is:

| abel IRPC identifier,character-1|ist
statenents
ENDM

See the foll owi ng exanpl e which generates values from1l to 3.

00002 | RPC X, 123
5200 00003 DB X
5200+ 00004 ENDM
5200+01 00005 DB 1
5201+02 00006 DB 2
5202+03 00007 DB 3

Macro | RP

The statenents within IRP-ENDM are repeated for as many itens as are in
the argument list with "dummy" being replaced by each argunment in turn. The
angl e brackets surrounding the argunent |list are mandatory. Its syntax is:

| abel | RP <dummy>, <argl, arg2,..., argn>
statenents
ENDM

where |l abel is an optional statenment |abel. See the follow ng exanple which
generates values from1 to 3 and nmakes use of the EXI TM escape.

00003 LABEL | RP XX <1, 2, 3, 4, 5>
5200 00004 LABXX DB XX
5200 00005 | FGT $- LABEL, 3
5200 00006 EXI T™M
5200 00007 ENDI F
5200+ 00008 ENDM
5200+01 00009 LAB1 DB 1
00010 | FGT $- LABEL, 3
00011 EXI T™M
00012 ENDI F
5201+02 00013 LAB2 DB 2
00014 | FGT $- LABEL, 3
00015 EXI T™M
00016 ENDI F
5202+03 00017 LAB3 DB 3
00018 | FGT $- LABEL, 3
00019 EXI T™M
00020 ENDI F

Macro Processing and Usi ng Macros
2 - 50

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

Conmand Summary

The appearance of the pronpt synbol, ">", indicates the "command node"
of the Editor Assenbler. Editor Assenbler commands may be typed after the
prompt synbol. The following |ist sumrarizes the comands recognized by the

Edi t or Assenbl er:

<A>ssenbl e source currently in the text buffer.
ranch to a specified address or return to DCS.
<C>hange string_1 to string_2.

<C>opy a block of lines to another |ocation.

<D>el ete specified line(s).

<E>dit a specified line of text.

<F>ind a specified string of characters.

Provide a printout of a specified range of text buffer Iines.
nsert source text.

<L>oad a source text file fromdisk.

<M>ove a bl ock of text fromone |ocation to another.
Re<N>unmber source text lines in the text buffer.
<P>rint source text to the display device.

<Query a directory fromthe designated drive.

<R>epl ace lines currently in the text buffer.

<S>wi tch the upper case/l ower case conversi on node.
<T>ype source text lines without line nunbers to a printer.
Di splay the nenmory <U>tilization.

<V>iew a file without loading it into the text buffer.
<Werite the current text buffer to disk.

e<X>tend the text buffer by elimnating the Assenbl er.
Command reserved for user.

Alter printed |lines per page and page | ength.

PNXs<CHOWLWINOTUTZZIrTITMOOOm>»

UPARW Scrol | up one source text line.

DNARW Scrol | down one source text |ine.

LTARW BACKSPACE key

RTARW TAB key

SRARW Page forward one screen.

PAUSE Perforns a functional pause of any operation: <SH FT @ (Model

Edi t or Assenbl er Commands
2 - 51

VIO E

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

<A>ssenbl e

The <A>ssenble command is wused to invoke the assenbly of your source
stream from menory and optionally, disk files (when "*CET filespec" or

"*SEARCH library" is used in the source streamj. The <A>ssenble conmand is
al so used to create a cross reference data file for downstream processing by
the XREF/ CVD programwhich will create a conplete synbol cross reference

listing. The syntax of the <A>ssenble comrand is:

A {filespecl/CVD}{, fil espec2/ REF} {-switch {-switch}...}

I

|
filespecl is the filespec to be used for the object code

file generation. If the file extension is |

omtted, "/CVMD'" will be used (see -C). |

I

I

filespec2 is the filespec to be used for the cross ref-
erence data file. If the file extension is |
omtted, "/REF" will be used.

I

I

I

I

I

I

I

I

I

| |
| Switches: |
I I
| -d CGenerates a Core-1mage object file. |
I I
| -1IM Assenbl es the object code into nenory. |
I I
| -LP Cenerates a Listing to the Printer. |
I I
| -M Search macro table before OP code table. |
I I
| -NC Suppresses FALSE condi tional clauses. |
I I
| -NE Suppresses data decl arati on expansi ons. |
I I
| -NH Suppresses the object file header record. |
I I
| -NL Suppresses the assenbly listing pass. |
I I
| -N™M Suppr esses MACRO expansi ons. |
I I
| -NO Suppresses obj ect code generation (MAS). |
I I
| -SL Suppresses synbol table |ocal |abel listing. |
I I
| -V Pauses the assenbly listing on an error. |
I I
| -WO Cenerates an obj ect code output. |
I I
| -W5 Cenerates a synbol table listing. |
I I
| -XR Cenerates a cross reference data file. |
I I

The <A>ssenbl e command can be used to generate object code into either
an executabl e object code file (/CVD) or a binary core-image object code file

Edi t or Assenbl er Commands
2 - 52

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

(/M. Your programcan also be assenbled directly into the unoccupied
menory regi on when the nenory | ocations to be occupied by your programare
not in conflict wth storage areas of the assenbler, your resident source
code, the MACRO storage area, or the synbol table.

The source text to be assenbled can exist either in nenory only, or a
conbi nation of menory and disk files. The in-menory source is considered to
be in the "text-buffer”. Wen your source program is too large to be
contained solely in the text buffer, it needs to be segnented into a
conbi nation of a nmenory segnment and one or nore disk file segnments. The disk
file segments are accessed during the assenbly process by use of the "*CGET
filespec” assenbler directive (detailed instructions concerning the use of
*CGET, are contained in the section entitled "ASSEVMBLER DI RECTI VES") .

The foll owi ng paragraphs describe the command line entries and swtch
options in detail. Please note that if the EDAS e<X>tend command has been
i nvoked, the <A>ssenble command will be inoperative.

Fi | especl

The first filespec on the command line, identified as "fil especl”, is
the filespec to be used for the object code file. Its entry is entirely
opti onal . When an object code filespec is entered, its entry wll

automatically invoke the generation of the object code to the disk file.
Anot her nmethod can also be enployed to invoke object code generation to a
disk file by means of the "-WJ' switch (see below). If your filespec entry
omts the file extension, the default of "/CMD'" will be used. This default is

changed to "/CM if the "-CI" switch is specified. It is recomended t hat
you |l et the assenbler assign the file extension, automatically. It will help
to keep your directories orderly, and there wll be less danger of

overwiting a source file with the object code file.

Fi | espec2

The second filespec on the conmand line, noted as "filespec2”
identifies the filespec to be used when witing the cross-reference data. The
cross-reference data generation is optional - it is required in order to run
the XREF/ CVD program EDAS will assign a default file extension of "/REF" if

you omt the extension from your filespec. As XREF/ CMD will also use this
ext ensi on when accepting the file specification, it is suggested that you |et
EDAS assign it. You can also invoke generation of cross-reference data by
using the "-XR' switch (see below). EDAS requires the entry of the comma to
recogni ze the cross-reference filespec as "filespec2". Therefore, if you want
the cross-reference data file but not the object code file, then either start
the command line wth the comma separator or use the XR switch w thout
entering the filespec with the comrand | i ne.

Switch -C

The "-CI" switch is used to generate a "core-inage" object code file.
Execut abl e command files in DOS are constructed with address information that
the system | oader uses when |oading and executing your conmand file. Also, a
header record is usually found in a load nodule object code file. There are
times when you would prefer an object code file without this "load" and
"comment" data. For exanple, say you want to burn a Progranmable Read Only

Edi t or Assenbl er Commands
2 - 53

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

Menory (PROM) froma file. A core-image file is needed. When the "-CI" switch
is specified, a nunber of changes take place in EDAS. First, the object code

file default extension is changed to "/CM (note: you nust still enter the
filespec or the switch "-WJ' to invoke object code generation). Next, the
header record and the transfer address record are suppressed. Any COM
pseudo- OP statenent is, |ikew se, suppressed. A core-inmage file needs to

contain contiguous address sequential code. Since EDAS reserves only storage
| ocati ons when assenbling the DS/ DEFS pseudo-OPs, the DS instruction would
cause your object code file to be non-contiguous. Invoking the "-CI" wll
automatically convert all "DS' statenents to their corresponding "DC'
statements with a zero val ue for operand2

Switch -IM

This switch will invoke object code generation; however, instead of the
code being witten to a file, it is placed into nmenory starting at the
address specified as the operand of the "ORG pseudo-OP. The "-IM swtch
will override the entry of the "-WD' switch or entry of "filespecl”. That is,
if both "-IM and "-WJ)'" (or filespecl) are entered, assenbly into nmenory wll
occur and assenbly to disk will NOT take pl ace.

Your programwi |l not be permitted to overwite any region belowthe end
of the text buffer (or nmacro storage area if macros are being used) nor wll
it be permtted to overwite the synbol table stored in high nenory. The
error message,

Menmory overlay aborted

will be displayed if your assenbled programw |l violate these restrictions.
The assenbly will be inmmediately stopped and EDAS will return to the command
ready pronpt. Upon successful conpletion of the assenbly to nenory, the
nessage,

Menory regi on | oaded
XXXX is the transfer address

will be displayed. This does not nean that your program assenbled w thout
error - only that the object code generated did not interfere with the text
buffer or tables created during the assenbly process. The "XXXX'" field in the
second nessage will contain the transfer address of the program It will be
listed in hexadeci nal

Switch -LP

The "-LP" switch is used to send the assenbler listing, error messages
occurring during the assenbly of your source code, and the synbol table
listing (if specified by means of the "-W5" switch) to a line printer. EDAS
assenbler listings print 56 lines per page and send a formfeed at the
conclusion of the 56 lines. If you are generating a listing output and a
properly paged display is desired, it is suggested that you set your paper to
begin printing at the sixth line fromthe top of the page (which assunes
pagi ng paraneters set at 56 print lines and 66 lines page length - the
default). This will provide five blank lines for a top margin, and five bl ank
lines for a bottom margin.

Edi t or Assenbl er Commands
2 - 54

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

If you are wusing other than 11" form paper, use the EDAS comrand "<1>"
to alter the paging paranmeters to suit the specifications of your printer

Al line nunbers are output in a sequential order incremented by one for
each line of logical output. Lines suppressed fromdisplay use up one line
nunber for each line omtted [i.e. from *LIST OFF to *LIST O\, -NC
statements; -NM statenents].

Switch -MF

This switch is used to force the assenbler to search the nacro nane
table prior to searching the OP code table when checking the "string"
contained in the OP code field. This allows you to nane a macro the sane as
an OP code; thereby altering the code generation of a standard Z-80 mmenoni c.

Switch -NC

Conditional assenbly can greatly ease the maintenance of prograns
designed to work wth multiple configurations of hardware. However, it is
unnecessary to "see" the source statenments within conditional clauses that
are FALSE. This "-NC' switch is provided to suppress FALSE conditiona
clauses from appearing in your listings. If a conditional is suppressed,
neither the "IF" statement nor the "ENDI F' statenent of the FALSE clause wl|
be Iisted except those statenments in a macro definition

Switch -NE

Data decl aration pseudo-OPs create a structured format for the listing
of code generated after the first byte of the statenent. These are the
DB/ DEFB/ DM DEFM DWDEFW and the DC pseudo-OPs. If you want to inhibit the
expansion fromthe listing, specify the No Expansion, "-NE', switch

Switch -NH

nj ect code files usually start off with a header record of X 05 06 xx
XX XX XX XX XxX'. The x's would be replaced with the first six characters of
the object code filenane (buffered with spaces). EDAS automatically generates
this record when witing the object code file. If you do not want to have

this header record generated, then specify the No Header, "-NH', switch
Switch -NL

The second phase of the assenbly process is used solely to generate the
assenbler listing. If you do not want to see a listing, then you nay enter
the No Listing, "-NL", switch. This wll conpletely suppress phase two and
shift the assenbler to phase three, object code generation. |If you are
interested in listing statenents containing errors, then you nust not
suppress the second phase. Note that only the lines containing assenbly

errors can be listed by specifying the "*LIST OFF" assenbler directive. See
the section on ASSEMBLER DI RECTI VES' for further details.

The cross-reference data file is witten during phase two. In order to
guarantee that the second phase is available, a cross-reference specification
will automatically override any entry of the "-NL" switch. This could be
useful during a job stream assenbly (from Job Control Language) where

Edi t or Assenbl er Commands
2 - 55

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

selected assenblies need the cross-reference data. Thus, your JCL could
specify "-NL" for every assenbly; whenever the XR option was invoked, phase
two woul d not be suppressed.

Switch -NM

You may have realized that the nacro nodel code is repeated whenever you
i nvoke a macro. Once you becone famliar with what the nmacro does, you really
don't need to see its expansion in your listings every tinme the macro is
i nvoked. Switch "-NM has been provided to inhibit the Ilisting of such
expansions. If you specify No Macro expansions, only the statenments invoking
the macros will be listed - the listing of the expansions will be inhibited.
In the case of a nested macro invocation, only the highest |evel macro cal
will be Iisted.

Switch -NO

The "-NO'" switch is used by MAS to inhibit the generation of the object
code file. Since EDAS does NOT generate object code unless you tell it to do
so (by "filespecl", switch "-WD', or switch "-IM), the "-NO' switch is
i gnor ed.
Switch -SL

If you specify "-SL", then any |label starting with a dollar sign, "$",
wi Il be suppressed fromthe synbol table listing and from any cross-reference
data file. Therefore, use of the "$" as the first character of local |abels
and specifying "-SL"™ will result in keeping your synbol table 1istings
uncluttered with local |abels - especially true with the LC conpiler

Switch -\WE

In a long assenbly, you may want the assenbler to pause the listing if
it detects an assenbly error (you're bound to get sonme of them. The Wit on
Error switch, "-WE', is available for that purpose. If specified, each tine
the assenbler comes to an error during phase two, it wll pause the listing.
Any character entered from the keyboard wll continue the assenbly and
listing. If you choose to enter the character "C' or "c", then the phase two
process will "c"ontinue without further interruption - even though additiona
errors may be detected. The Ilisting may also be paused at any tinme by
depressi ng the <PAUSE> key, nonentarily.

Switch -WD

As noted in a precedi ng paragraph, object code generation is specified
when "filespecl” 1is entered. Assenbl ed object code is al so generated to disk
if the Wth Qoject switch, "-WO' is specified. If "filespecl” has not been
entered, the pronpt nessage:

oj fil espec?

will be displayed. Enter the object code filespec that you want to use to
save the assenbl ed object code conmmand file at this tine. If you do not enter
afile extension, the default "/CvD' wll be assumed. EDAS wll open the

file if it is an existing file and display the nessage, Replaced, or create

Edi t or Assenbl er Commands
2 - 56

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

the file if it is non-existent and di splay the nessage, New file.

If you enter "filespecl”, it is not necessary to enter the "-WD' switch
as entering the object code filespec will activate the "-WJ)' switch. If the
switch, "-IM, is specified denoting an in-nmenory assenbly, the "-WD'" switch

wi Il be ignored.
Switch -W5

A conplete synbol table cross-reference listing is available via the
"-XR' switch and subsequent processing by the XREF/ CVD program Such a
separate process is needed in order to be able to handle cross referencing of
statements fetched froma *GET or *SEARCH file. An abbreviated printout that
contains only a sorted listing of synbols and their value is available at
assenbly tine by invoking the Wth Synbol switch, "-Ws". The synbol table
listing would normally be displayed on the video display. If the "-LP" switch
was specified, the listing would be directed to the Line Printer.

Switch -XR

This is the switch option to use if you want to generate a conplete
synmbolic cross reference listing. Switch "-XR' will invoke the generation of
a reference data file used by the XREF/ CMD utility. The reference data file
is generated during the listing pass (phase two). |If the XREF filespec is

entered with the command line, this switch is assunmed to have been entered.
If the XREF filespec is not entered wth the command line, the fil espec of
the reference file will be pronpted for with the query,

XREF Fi |l espec?

Respond with the fil espec that you want to use to store the reference data.
If you do not enter a file extension, the default "/REF" wll be assuned.
EDAS will open the file if it is an existing file and display the nessage,
"Repl aced" or create the file if it is non-existent and display the
message, "New file"

Error totals

At the concl usion of phase three which generates object code, a listing
of the total number of errors will appear. This error total will be displayed
after the conclusion of phase two if object code is not generated. |If you
need to get a quick idea whether or not your source code contains errors,
pl ace an "*LIST OFF" pseudo-OP at the beginning of your code and onmt any
object code generation - but do not specify "-NL". Only |ines containing
errors will be listed. You could also specify switch "-WE' to pause when an
error occurs.

A "No end statenment” error is included in the ERROR TOTALS count. An
"Uncl osed conditional” error is also included in the ERROR TOTALS count. If
the END statenent is omtted, the ERROR TOTALS count figure will be correct.
Note that error totals is onmtted if pass 2 and pass 3 are suppressed.

Edi t or Assenbl er Commands
2 - 57

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

r anch

The ranch command is used to exit EDAS. Since the ranch conmand
permts an address as an optional paranmeter, you can use it to junp to any
address (the entry to an in-nmenory assenbled program for instance). The
syntax of ranch is:

B {address}

addr ess is the branch address entered i n hexadeci nmal

This command is used to exit the Editor Assenbler or optionally branch
to any user designated address. If a branch address is omtted, a return to
the DOS Ready conmmand node is perfornmed. If a branch address is provided, the
top of the stack will contain a re-entry address to EDAS. This can benefit
the testing of a program assenbled into nenory. A sinple "RET" instruction in
your programwll return control to EDAS (provided your program maintained
stack integrity and did not crash).

Exanpl es of the ranch conmmand are:
B "B" will cause an exit from EDAS and return to DCS

B 9000 This command will cause an exit from EDAS and branch
to your programat X 9000

B 30 This will cause EDAS to enter DEBUG The PC register
di spl ayed by DEBUG i s the return address to EDAS
<C>hange

The <C>hange conmand perfornms a global nodification of a string of
characters. Its syntax is:

C /stringl/string2{/nl, n2}

stringl is the current string to change.
string2 is the replacenent string for stringl
nl is the line nunber of the line preceding the

first change (FIND al ways starts at |ine+l).
n2 is the line nunber of the last line to change.

/ represents a string separator character. It
can be any character except a digit <0-9>.

Edi t or Assenbl er Commands
2 - 58

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

A string of characters can be changed throughout the text buffer by this
one easy conmand. The gl obal <C>hange conmmand will change the appearances of
"stringl" to the sequence "string2". Because <C>hange uses the <F>ind command
to locate strings and the <F>ind command always starts searching at "current
line + 1", no changes <can be perforned on the first line of the text buffer -
at least not with the <Cshange command. Al so, only the first appearance of
"stringl" in each line that "stringl" appears will be altered.

The first non-blank character following the "C' becones the string
delimter (the slash character is shown above; any character except a digit
<0-9> is permtted). Null strings are not permtted (i.e. the string nust
contain at |east one character).

There is no requirenent for "string2" to be the sane length as

"stringl". It can be of |esser, equal, or greater |length; however, no string
can exceed 16 characters in length. If a change would result in a line
exceeding the maximum line length (which is 128), the change will not be
performed on that |ine and the nmessage, "Field overflow wll be issued. The

search for "stringl" continues for the remaining |ines.

A line which contains "stringl" wll be displayed as it exists both
before and after the change. The <SH FT-@ key may be used to pause the
di splay. If you depress the <BREAK> key, it will stop further changi ng.

The entry of "nl" and "n2" is optional. If "nl" is entered, then "n2"
nust be entered. If neither "nl" nor "n2" is entered, then "nl" is assunmed to
be the beginning of the text buffer (# or t) and "n2" is assunmed to be the
end of the text buffer (* or b). Either "nl" or "n2" can be entered as the
current line indicator (.). You can enter "nl1" as (# or t) to indicate the
begi nning or top of the text buffer while "n2" can be entered as (* or b) to
indicate the bottomof the text buffer. One additional restrictionis that if
you enter "n2" as "b" or "*", then no change will be nade on the |ast |ine of
the text.

VWhen EDAS is set to the "l ower-case converted" node (see the information
concerning the "<S>witch-case" command), both "stringl®™ and "string2" will be
converted to upper case characters prior to the search and replacenent. I|f
you need to change |ower case characters as well, then you nmust sw tch EDAS
to the "l ower-case permtted” node prior to issuing the <Change conmmand.

The "tab" character is a perfectly acceptable character to be used
within "stringl" or "string2". This may be wuseful if you want to convert a
conti guous sequence of spaces to a single tab

Sone exanpl es of the <C>hange comand are:

C / MODI FY/ ALTER/ This conmand wi Il change all appearances of
the string "MODIFY" to the string "ALTER'.

C . DEFB. DB. 90, 1000 This command wi ||l change all appearances of
"DEFB" to "DB" fromline 100 to |ine 1000.

C /DEFM DB/ 90, b This will translate all appearances of
"DEFM' to "DB" fromline 100 to the end of the file.

Edi t or Assenbl er Commands
2 - 59

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

<C>opy

The <C>opy conmand can be used to duplicate a line or block of lines
fromin the text buffer. Its syntax is:

Clinel,line2,line3

[inel is the first line of the block to duplicate.
line3 is the line nunber of the line that the copied

bl ock shoul d fol |l ow

I
I
I
I
I
| line2 is the last line of the block to duplicate
I
I
I
I

This command is wuseful to duplicate a line or block of |lines. Note that
the command letter is the same as the <Change command. EDAS will interpret
the <C as a <Ceopy command if the first non-blank character follow ng the
<C is adigit <0-9>. At the conclusion of the <Csopy operation, the entire

text wll be renunbered using the increment currently in effect. A few
restrictions are in order. A <Csopy cannot be performed if "line3" is
interior to the block "linel"-"line2". "Linel" nust either precede "line2" or
be equal to "line2" (where "linel" is equal to "line2", the block to be
duplicated consists of the single line, "linel").

If insufficient space is remmining in the text buffer to duplicate the

entire block, none of the block of lines wll be copied and the nessage,
"Text buffer full" will be displayed. The paraneters (line nunbers) nust
specify specific lines in the text buffer. If any of the Iine nunbers cannot
be found, the copy will not be perfornmed and the nessage "No such line" wll

be di splayed. The <Csopy conmand requires all three paraneters entered and
separated with the comma (,). If this syntax is not net, the nessage "Bad
paraneters” wll be displayed.

Sone exanpl es of the <Csopy command are:

C 100, 200, 1000 This command wi Il duplicate the bl ock of |ines
nunbered from 100 to 200 inclusive to al so appear after
i ne nunber 1000.

Ct,50,50 This command will copy the block of lines from
the top of the text through |line nunber 50 so that it
will also followline nunber 50.

c 580,700, b This <Copy command wi ||l duplicate the bl ock of
i nes nunbered from580 to 700 so that they al so appear
after the current bottom of text.

Edi t or Assenbl er Commands
2 - 60

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

<D>el et e

The <D>el ete command is used to renove a line or block of lines fromthe
text buffer. Its syntax is:

D {linel{,line2}}

I

I

. _ _ _

| linel is the first line to del ete.
I

I

I

i ne2 is the last line to del ete.

This conmand is used to delete the line or lines specified fromthe
source text buffer. The characters "#' or "t" are used to indicate the
begi nning of the text buffer when used for "linel". The characters "*" or "b"
are used to indicate the bottomof the text buffer when used for "line2". |f

the line paraneters are omtted, the current line, i s assumned.
To aidin you in observing what becones the new current line after a
line del ete operation, the new current line will be displayed.

Sone exanples of line deletes are:

D 100,500 This <D>elete will renmove fromthe text buffer
lines 100 through 500 (inclusive).

DT,B This command will renpve the entire source text
fromthe text buffer. "d t,b" and "d #,*" are
equi val ent forns of this delete.

Dor d This <D>el ete command will renpve the current

source text line. A period, ".", may al so be used
to indicate the current line (i.e. "D.").

D 105 This command will delete the the single line
nunber ed 105
<E>dit

The <E>dit comrand is used to invoke the Iline editor for purposes of
maki ng alterations to a single text line. Its syntax is:

I I
| E {line} |
I I
| line is the nunber of the line to edit. |
I I

This conmand permts the user to edit or nmodify any source text |ine.
The syntax and function of all edit subcommands are simlar to those inple-
mented in the BASIC editor. If the optional Iine nunber is not entered, the

Edi t or Assenbl er Commands
2 - 61

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

current 1|ine, ", will be edited.

VWen wusing the line editor, it will always operate in the "l ower-case
permtted" node. Therefore, you wll need to pay attention to use of the
<SH FT> key when editing upper-case characters. However, once you conplete
your editing and exit the line weditor, your line will be properly converted
to upper-case as required if EDAS is in the "l ower-case converted" node.

The following table of Edit Subcomrands are provided for a rem nder of
the comon edit operations:

A Abort and restart the line edit.

nC Change n characters.

nD Del ete n characters.

E End editing and enter the changes.

H Del ete (hack) the remai nder of the line and

insert the followng string. A line hacked to
zero length will be automatically del eted when
exiting the line editor.

nKx Kill all characters up to the nth occurrence
of x.

starting position of the line.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
| Insert string. |
I
I
I
I
I
I
I
I
I
I
I
I
I

Q Quit and ignore all editing.

nSx Search for the nth occurrence of x.

<-- Move edit pointer back one space

ENTER Enter the line in its presently edited form |

and exit the edit node. |

ESCAPE Escape from any edit node subcommand. The |
<SH FT- UP- ARRON+ key is the escape key on
the Model 1/111/4.

SPACE D spl ay the next character of the current

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
|
| L Print the rest of the line and go back to the
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
| line being edited.
I

Edi t or Assenbl er Commands
2 - 62

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

<F>i nd

The <F>ind comrand is used to |ocate the next occurrence of a string of
characters within a line. Its syntax is:

I I

| F {string} |

I I

| string is the character sequence to find. |

I I
The text buffer is searched starting at the current "line+l" for the
first occurrence of "string". "String" can be from <1 to 16> characters in

length. If nore than 16 are entered, then any characters beyond the 16th wll
be ignored. If no string is specified, the search is the sane as that of the
last <F>ind command in which a string was specified (provided a globa
<C>hange conmand was not perforned after the last <F>ind command). If the
search string is found, the line containing it is displayed and the current

line pointer, ".", is updated to point to the displayed line. If the string
is not found, the message "String not found" is displayed and the current
line pointer, ".", remains unchanged. A "P#" or "Pt" command can be wused to

position the line pointer to the top of the text buffer prior to use of the
<F>i nd command. Spaces and tabs are considered to be part of "string" and are
t hus acceptable for "finding"

Sone exanpl es of the <F>ind comrand are:

FVWRI TEWORD This <F>ind command will |ocate the next
appear ance of the string "WRl TEWORD".
F This finds the next appearance of "WR TEWORD".
<H>ar dcopy

This conmand lists a line or block of lines on aline printer to provide
a "hard copy". Its syntax is:

H {linel{,1ine2}}

I
I
I
| linel is the line nunber of the first line to print.
I
I
I

line2 is the line nunber of the last line to print.
This command will print a line or a group of lines to aline printer
EDAS will print 56 lines to a page (see the discussion of the <1> commmand).

If a properly paged display is desired, it is suggested that you set your
paper to begin printing at the sixth line fromthe top of the page.

Sonme exanpl es of the <H>ardcopy command are:

Edi t or Assenbl er Commands
2 - 63

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

H# * or Ht,b This command will print the entire text buffer

H 100, 500 This command will print |ines nunbered 100
t hr ough 500 i ncl usi ve.

H. This conmand will print the single |ine pointed
to by the current line pointer, "."

H This conmand will print 15 or 23 lines
(depending on the DOS) starting with the current I|ine.
<l >nsert

This command is used to invoke the <l>nsert node so |lines can be input
into the text buffer. <I>nsert's syntax is:

I {line#{,inc}} |

I

I

I

| | i ne# is the nunber of the line that the insert
| shoul d foll ow.
I
I
I
I
I

i nc changes the current increnent to "inc". |

Not e: use <BREAK> or <SHI FT-CLEAR> to exit |

The Insert command is used to insert or add text lines into the text
buffer. Al lines of source text are entered with the use of the nsert
conmand. After using the <l>nsert command to specify where you wish to place
new lines, the editor will generate the designated |ine nunber and all ow the
inserting of that nunbered text line. After entering the first text line the
editor wll generate the next line nunber higher, as specified by your
i ncrenent selection. Increnental line nunbers wll continue to be generated
as long as there is roombetween lines or roomleft in the text buffer

If a desired increnment is not specified, the last specified increment is
assuned. Period, ".", may be used for "line#" to indicate the current |ine
or if "line#" is omtted, the current line will be assuned.

The <BREAK> key will allow you to | eave the insert node at any tinme. The
<CLEAR> key al so perforns a functional BREAK |If you have entered the <BREAK>
bef ore depressing <ENTER> to complete the input of a line, that Iline will not
get entered into the text buffer

Sone exanpl es of the <I>nsert command are:

I 300,5 This command will begin the text insertion to foll ow
I i ne nunbered 300 and al so change the increnment to 5

I B Thi s appends new text to the end of the old text.
It is the sane as a " Pb" followed by an "I".

Edi t or Assenbl er Commands
2 - 64

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

<L>oad

This command is wused to load a source file into the text buffer. Its
syntax is:

I I
| L {filespec} |
I I
| filespec is the filespec of the file to be | oaded. |
I I

The <L>oad conmand will read the file denoted by the "filespec" into the
text buffer. The text file will be concatenated to any text already in the
text buffer. The file specification is conposed of a FILENAVE, optiona
EXTensi on, optional PASSWRD, and optional DRI VE reference as in:

FI LENAVE/ EXT. PASSWORD: D

If you do not enter the "filespec", EDAS will pronpt you for the file-
spec. If you omit the file extension (EXT), a default extension of "/ASM
will be used thus saving keyboard input and at the sane tinme providing for a
standard file nam ng convention. If the "LC' parameter was specified in the
EDAS command line, then "/CCC'" will be used for the default. The EDAS para-
meter "EXT=ext" can be used to override the assigned default extension to
that of "ext".

The <L>oad comrand wll automatically handle a source file that is
i ne-nunbered and headered (EDAS Version 11l format), |ine-nunbered and
un- headered (EDTASM Series | format), or un-nunbered and un-headered (EDAS
format, text editor prepared files, or certain M80 files). If the file being
read is not |ine-nunbered, EDAS will automatically nunber it as it loads. A
[ine nunber counter is kept internally that advances by the current increment
for each un-nunbered line read. Thus, concatenation of source text via nul-
tiple |l oads of un-nunbered source files will produce a sequentially nunbered
in-menory text. The line nunber counter is reset toits initial starting
value by a warmstart or the <CLEAR> conmand function

A line-nunbered file is interpreted as one in which the first five
characters of a line have the high-order bit (bit 7) set. The 5-character
line nunber is also followed by a termnating character (usually a space but
could be a tab wth bit 7 set). A headered file is interpreted as one in
which the first character of the file is a X D3'.

"ASCI 1" files prepared by a word processor program(i.e. SCRIPSIT) are
| oadabl e by EDAS; however, they nust be pure ASCIl and must have line |engths
not exceeding 128. The other requirenment is that there nust be an end-of-file
(EOF) character as the last character of the text imediately follow ng a
carriage return. The EOF character can be either an X 1A' or a NULL, X 00'.
EDAS can convert |ower case to upper only during <l>nput or <E>diting so if
you use an external word processor program keep the Z-80 code in upper case.

Sone exanpl es of <L>oad commands ar e:

L nyprog This conmand will search for a file named

Edi t or Assenbl er Commands
2 - 65

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

"MYPROE ASM' (assum ng a default extension of
"/ASM') and load it into the text buffer

L theprog:1 This conmand will load the file naned
"THEPROE ASM' fromdrive 1 into the text buffer.

Dt,b
L newprog: 2 This sequence clears the text buffer then | oads
the file naned "NEWPROG ASM' fromdrive 2.

<M>ove

This command is used to <Mrove a line or block of lines from one text
buffer location to another. Its syntax is:

shoul d follow after the nove.

I I
| Mlinel, line2, line3 |
I I
| linel is the line nunber of the first line to nmove. |
I I
| line2 is the line nunber of the last |line to nove. |
I I
| line3 is the nunber of the line that the bl ock |
I I
I I

This command is used to nove a block of Iines fromone location in the
text buffer to another. In the comrand syntax, "linel" and "line2" are the
begi nning and ending |line nunbers of the text block to be noved; they can
reference the same |ine nunber when noving a single line. "Line3" 1is the line
nunber of the Iline that the text block will follow after the nove. The line
nunber references nust be offset by commas ",". Your |ine nunber paraneters

must specify existing lines in the text buffer. If any of the entered |line
nunbers are non-exi stant, the nessage "No such line" will be displayed.

"Line3" is not permtted to equal "linel” or "line2" as that would rep-
resent an illogical nove operation. "Line3" is not permtted to be a line
interior to the range "linel" through "line2" as that would also be an il-
| ogi cal operation. The nessage "Bad parameter(s)” will be issued if your

i nput violates any of these conditions.

The block of text to be noved is stored tenporarily in the spare text
region. If this region is not |arge enough to store the block, the message,
"Text buffer full"™ will be issued. Try moving the block in smaller segnents.

Upon conpletion of the move, all lines in the text buffer will be re-
nunbered starting from 100 and incremented according to the line increment
currently in effect. Renunbering is absolutely essential to perform proper
operation of Editor Assenbler conmands and so it is done automatically.

An exanpl e of a <Mrove comrand is:

M 500, 900, 1510 You desire to nove the bl ock of text starting

Edi t or Assenbl er Commands
2 - 66

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

at line 500 and ending at line 900 to follow Iine 1510.
This conmand will performthe desired operation

Re<N>unber

This command is used to re<N>unber the Ilines of text in the text buffer
Its syntax is:

I
N {line{, inc}} |

I
I
. _ | _
| line is the newfirst |ine nunber
I
| 1inc is the new increnent.

I

The <N> command is wused to renunber the lines in the text buffer. The
first line inthe buffer is assigned the nunber specified as "line". |If
"l'ine" is not specified, it defaults to 00100. The remaining lines in the
buf fer are renunbered according to the increment "inc" or the previous in-
crement in a re<Nsunber, <R>eplace, or nsert command if the increment was
not specified. The current line pointer, ".", points to the sane line as it
did before the re<Nsunber command was used, but the actual nunber of this

line may be changed.
Sone exanpl es of |ine re<N>unbering are:

N This conmand will renunber the text to start with |ine
nunber 100. The previous increnent in effect will be used.

N5 This conmand will renunber the text to start with
line number 5. It also uses the previous increnent.

N10, 5 This conmand will renunber the text to start with
Iine nunmber 10. The line increment is changed to 5.
<P>rint

The <P>rint command is used to display a line or block of lines to the
video display. Its syntax is:

P {linel{,1ine2}}
[inel is the nunber of the first line to display.

line2 is the nunber of the last line to display.

Edi t or Assenbl er Commands
2 - 67

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

The <P>rint command will display a line or a group of lines on the non-
itor screen. The current line pointer, ".", is updated to point to the |ast
i ne displayed.

If "linel" is entered without entering "line2", then only "linel"” wll
be displayed. |If neither "linel"” nor "line2" are entered, then the current

line plus 14/22 additional lines for a total of 15/23 w |l be displayed (de-
pendi ng on the DOS).

Sonme exanpl es of <P>rinting lines:
P #, * This conmand will display all lines in the text
buf fer. You may use the <PAUSE> function to tenpor-
arily halt the display fromscrolling. "P t,b" is
equivalent to "P #, *".

P 100,500 This conmand displays |ines 100 t hrough 500 i ncl usive.

P . This conmmand will display the line pointed to by
the current line pointer. Only a single line will
be di spl ayed.

P Thi s command displays a full screen of lines

starting with the current |ine.

<uery

Thi s command can be used to invoke a DOS conmand. Its syntax is:

Q DGCs- command

I I
I I
| _ |
| DOCS-conmmand can be any DOS |ibrary command. |
I I

<Query is used to interface with the DOS while in the environnent of the
Editor Assenbler. Any DOS library conmand can be accessed.

An exanpl e of a <Query conmmand is:

QDR This <Q@uery command will list the diskette directory
to the display device

Edi t or Assenbl er Commands
2 - 68

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

<R>epl ace

This comrmand can be used to replace a specified text line and autona-
tically enter <I>nsert npode. Its syntax is:

I
R {line{, inc}} |

I
I
. _ |
| line is the nunber of the Iine to repl ace.
I
| 1inc is the newincrenent to be used.

I

The <R>eplace comand only replaces the one line specified and then

enters <I>nsert node. If "line" is omtted, then the current line is assuned.
If "line" exists, it is deleted and then nsert node is entered starting
with that Iine nunber. If "line" doesn't exist, nsert node is entered just

as if the <I>nsert comand were invoked. If "inc" 1is not specified, the |ast
i ncrenent specified by an <l >nsert, <R>eplace, or re<Nsunber conmand is used.

The current line pointer, ".", is always updated to the new current |ine.

I f during subsequent INPUT of lines, the error nmessage "No nore roonmt is
issued, it neans that a line nunbered "current" + "inc" already exists. It is
suggested that you renunber the lines and continue your insertion after
ascertaining the new | ine nunber assigned to the "current" line.

Sone exanpl es of <R>epl ace conmands are:
R This conmand will replace the current |ine.
R 100, 10 This <R>epl ace command will start replacing |lines
begi nning at |ine nunbered 100 and enter <I>nsert
node with an increment of 10.
R 100 This conmand will start replacing at |ine nunbered
100 using the last specified increment.
<S>wi tch Case Conversi on Mde
This command is used to toggle the "case conversion node" of EDAS. It
will either permt the acceptance of both upper case and |ower case, or

i nvoke the automatic conversion of |ower case to upper case where required.
Its syntax is:

S

I I
I I
I I
| There are no paraneters or options. |
I I

Conmand <S>witch will toggle the swtch-case conversion of |ower case to
upper case. Two nodes are avail abl e:

Edi t or Assenbl er Commands
2 - 69

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

1. Lower case accepted: This permts entry in either |ower
case or upper case. Your input is preserved in whatever
case it is entered. EDAS is suitable as a text editor in
this node. This is the node wused when entering LC
C- I anguage source text.

2. Lower case converted: This permits entry in either upper
case or lower case. Al lines are converted to upper case
during <I>nput node or when exiting the <E>dit node. This
nmode should be used to input assenbler source text. Wile
in this node, character strings within single quotes stay
intheir entered case. This wll ensure that your string
declarations are kept intact. A so, characters entered
follow ng a sem -colon are kept in their entered case. This
permits the entry of comments in [ower case which makes
your source text much nore "readabl e".

On entry to EDAS, the "lower case converted" node is activated. Each
entry of an "S' command will toggle the case node and an appropriate nessage
wi Il be displ ayed.

Since the <l>nsert command node converts to upper case, the <F>ind and
<C>hange commands utilize the nsert input and will also convert to upper
case. You can <F> or <C lower case by wusing the case swtch toggled to
"l ower case permtted".

<T>ype

This conmand can be used to print aline or block of lines wthout the
line nunbers on a line printer. Its syntax is:

T {linel{,line2}}

I I
I I
I I
| linel is the nunber of the first line to print. |
I I
I I
I I

line2 is the nunber of the last line to print.
The <T>ype comrand prints a line or block of lines onto the Line
Printer. The current line pointer, ".", 1is updated to point to the last |line

printed. This command is nuch like the <Hsard copy comand, except |ine num
bers are not printed. Only the source text is printed.

For exanples of the <T>ype conmand, see the <H»ard copy comand. The two
conmands differ in that <T>ype omts the |ine nunbers during the printing.

Edi t or Assenbl er Commands
2 - 70

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

Menory <U>SAGE

This conmand is used to display certain statistics concerning the nenory
usage of your source text buffer. Its syntax is:

I I
| U I
| _ |
| There are no paraneters or options. |
I I

This conmand wi |l display the nunber of bytes of text buffer in use, the
nunber of bytes spare and the first address available for assenbly to nenory
(note that if macros are being used, the macro storage area extends fromthe
address shown as the first address available for assenbly and you will have
to experinmentally choose a higher address for an "in-nenory" assenbly).

This command is useful to ascertain requirenments for storing the text
buffer to disk. Note that a disk file, which is witten in ASC I (un-num
bered), will contain two (2) bytes less per text line. The 2 bytes represent
the line nunmber used in the storage format of text in mnmenory versus text in
an un-nunbered ASCI | file.

It also is useful when assenbling into nenory. Since the Assenbler wll
not permt you to overwite it or the text buffer, you will have to "ORG
your programin the free text buffer area. The first available address is
out put by this conmand (renenber the note on macro storage).

An exanpl e of <U>sage output is:
30622 bytes spare
00000 bytes in use
8863H is the first free address

<\V>i ew

This conmand is wused to list (display) a file on the video display
device. Its syntax is:

I I
| V {filespec} |
I I
| filespec is the filespec of the file to be displayed. |
I I

This command can be used to display any file wthout actually | oading
the file into the text buffer. No attenpt is nade to convert non-ASCI| char-
acters prior to displaying. Therefore, if the file is not an ASCIl file,
strange characters may be displayed. Use the <V>iew command primarily to
di spl ay source files.

Edi t or Assenbl er Commands
2 - 71

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

The output may be tenporarily stopped by depressing the <PAUSE> key or
may be interrupted and cancell ed by depressing the <BREAK> key.

If you do not enter the filespec with the command Iline, it wll be
pronpted for with the query:

filespec?

If you do not enter a file extension with the file specification, a de-
fault extension of "ASM will be used unless the "LC' paraneter was specified
when entering EDAS. "LC' redefines the default specification to "CCC'. Note
that the default extension could also have been changed via the " EXT=ext"
par anet er .

<Write

The <Wrrite command is used to save the contents of the text buffer into
a disk file. Its syntax is:

W +H{#{S$}{!'hh} {filespec}
filespec is the filespec to be witten.

+ is an optional switch to wite a source file
created with a header record.

I I
I I
I I
I I
I I
I I
| |
| # is an optional switch to wite a source file |
| with |ine nunbers. |
I I
| $ is an optional switch to wite a source file |
| with line nunbers term nated by X 89'. |
I I
| 'hh is an optional switch to specify a end-of-file |
| terminating byte of X hh' other than X 1A' . |
I

I

Use "!'l" to suppress the E-OF byte. |
I

This conmand will wite the text buffer to the file denoted by fil espec.
If no filespec is entered, you will be pronpted for it in a manner identical
to the <L>oad conmand. |If you omt the file extension (EXT), a default
extension of "ASM wll be used thus saving keyboard input and at the sane
time providing for a standard file nam ng convention. Renenber, if you had
specified "LC' or "EXT=ext" when you entered EDAS, the default source
extension will be "CCC' or "ext" respectively.

The switches are used for conpatibility in witing source files for use
with other editors such as the M80 editor, ED T80, earlier versions of EDAS
(3.4 and 3.5), and EDTASM If nore than one switch is used, the order is
irrelevant. Use of the switch "+" wll enable creating a file with a file
header record (X D3' followed by a 6-character fil enane).

Edi t or Assenbl er Commands
2 - 72

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

If the source file is to contain line nunbers, then the "#" swtch
shoul d be used. This will wite line nunbers as five ASCII digits wth the
high order bit (bit-7) set. The Iline nunber is termnated with a space

character (X 20'). The switch "$" generates a |line nunbered file the sane as
the "#" switch; however, the termnating character is witten as a tab with
bit-7 set (X 89'). Sone versions of FORTRAN require the source file to be in
this manner; thus, EDAS could be used to prepare source files for FORTRAN.

Finally, the "I'hh" switch can be used to specify an end-of-file byte to
be other than the standard X 1A° normally used by EDAS. For instance,

specifying "!00" will change the E-O-F byte to X 00, the value used by
SCRIPSIT. |If instead of the two-character hexadecinmal value, you enter a
second exclamation point as in "I'!'", then no E-OF byte wll be witten

(ohserve caution as EDAS can only properly load a file if the EEOF byte is an
X 1A' or an X 00'.

If the file denoted by "filespec" is non-existent, a file will be
created and the nessage, "New File", will be issued. |If the file denoted by
"filespec" is an existing file, it will be replaced by the wite operation

and the nessage, "Replaced”, will be issued.
Sone exanpl es of <Werite commrands are:

W par ndi r1: 3 This conmand will wite the current contents
of the text buffer to the file, PARVDIRL/ASM 3

W!00 doparmjcl:0 This <Werite conmand will save the text buffer
inthe file, DOPARMJCL: 0. An E-O F byte of X 00'
woul d be used instead of X 1A . Thus, EDAS was used
to edit a Job Control Language file.

e<X>t end

This command can be used to increase the area of the text buffer by
elimnating the assenbler. Its syntax is:

X

I I
I I
I I
| There are no paraneters or options. |
I I

This comrmand can be used to extend the text buffer area by noving the
text over the Assenbler portion of EDAS in nenory. Approximately 8000 bytes
are gained by this extend operation. It is useful if you are editing a |large
body of text or are dealing with a |arge assenbly |anguage source program
Since the capability of direct assenmbly fromdisk files is a function of the
EDAS Editor Assenbler, editing can be performed w thout the Assenbl er nodul e
of the program in nmenmory. You, of course, will have to exit and reload the
Editor Assenbler for further assenbling.

Another reason for the use of e<X>tend, is to handle those EDAS 3.5
files that now exceed the maxi mumtext buffer size of EDAS version 4.x. It 1is

Edi t or Assenbl er Commands
2 - 73

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

suggested that you keep vyour source files in snmaller nodules. The *CGET
capability provides great power in handling multiple source files in an
assenbly stream You will thus find that a program made up of smaller nodul es
of code is perhaps easier to maintain and just as fast to assenble.

Following the entry of the <X> command, the pronpt, "Are you sure?",
will be displayed. This is provided as a safeguard in case you inadvertently
enter the <X> conmmand. You nust respond <Y>in order to conplete the
extension. Entry of any other character will abort the extend operation. A
response to the query with a <Y> wll nove the current contents of the text
buffer and reset all pointers to their proper value. Once the e<X>tend
command is invoked, both it and the <A>ssenble command will be nade
i noperative.

<1> (ONE)

Thi s conmand can be used to display or alter the current page formatting
paraneters of EDAS. Its syntax is:

I I
I 1{nl{, n2}} I
| n1 is the nunber of lines to print per page. |
I I
| n2 is the page length in |lines. |
I I
For the Model I/111 operation, this comand can be used to alter the two

pagi ng paraneters used by EDAS. The "nl1" paraneter specifies how many |ines
to print on a page before issuing a form feed. The "n2" paraneter is set in
the printer Device Control Block at X 4028 and represents the nmaxinmm
printing lines on a page. EDAS initializes with "nl1" set to 56 (57 on a Mde
1l which starts counting from 1). Thus, 56 lines wll be printed before
sending a page eject. Either value can be changed with this command. If no
paraneter is entered, then the current values will be displayed.

Only the "nl1" parameter can be wused under TRSDCS 6.x. If FORMB is
active, its LINES paraneter nmust not be I ess than or equal to the value set
by the "1" conmand. The default will be 56 printed lines per page. Page
breaks generate a form feed character, X 0C. For printers that do not
support a formfeed, use the FORMS filter under TRSDOS 6. X.

An exanple of the <1> conmand i s:
1 46 51 This command will set the maxi mum page length to 51
The nunber of printed lines until a formfeed is
generated will be set to 46

Scroll UP <UP- ARRON

The "SCROLL UP" command di splays the I|ine preceding the current |ine and

updates the current line pointer, ".", to point to the line displayed. If the

Edi t or Assenbl er Commands
2 - 74

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

current line is the first line in the text buffer, it is displayed and period
"." remains unchanged. "SCROLL UP" is an imedi ate conmand and nust be the
first character of a command line in order to be interpreted.

Scrol | DOAM <DONN- ARRONS

The "SCROLL DOM' command displays the line following the current line
and updates the current line pointer, ".", to point to the Iine displayed. If
the current line is the last line in the text buffer, the last line is
di spl ayed and period "." remains unchanged. "SCROLL DOM' is an imediate

conmand and must be the first character of a conmand |ine to be interpreted.
Cl ear Screen

The <CLEAR> or <SH FT><CLEAR> key (depending on DOS used) is wused to
performa functional clear screen. "CLEAR' also perforns a <BREAK> operation
but cannot be wused to interrupt output. "CLEAR' will reset automatic |line
nunbering to its initial value of 100.

Pause <SH FT- @

The <PAUSE> key is wused to pause the conputer during a display, during

any assenbly, or Editor Assenbler printing. When a pause is sensed,
depression of any key except <PAUSE> or <SH FT> will continue the operation
paused. It is only necessary to nonentarily depress the key as a pause

function will be held pending as soon as the key is pressed

BREAK

The <BREAK> key is wused to termnate the <I>nsert node. It is also used
to abort an assenbly in effect. It will also abort any disk I/O operation or
display listing. <BREAK> will return EDAS to the conmand ready pronpt, ">".

Page Forward

The <SHI FT- RT- ARRON> key is used to advance the display by 15/23 |ines.
This command is simlar to the <P>rint command except that the display screen
is cleared prior to displaying the 15/23 lines of source text.

User Patch Space - ZC\WD

A 50-byte patch space is available for your wuse. A vector pointing to
this space is located at X 5A09" (Model 1/111), or X 2D09" (TRSDOS 6.x). |If
you place a routine in this space, it can be executed by entering a <Z> at
conmand ready. <Z> currently has a RET instruction as the first byte.

Edi t or Assenbl er Commands
2 - 75

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

Error Messages - (Genera

The Editor Assenbler recognizes three types of errors. These are:

Conmand This is an EDAS command syntax error. The
error nessage is displayed and control is
returned to conmand node.

I I
I I
I I
I I
I I
| DCS This is an operating systemdisk I/O error. |
| The error nessage is displayed and control is |
| returned to conmmand node. |
I I
I I
I I
I I
I I

Assenbl er These errors may occur while executing an
Assenbl e command. There are three types:
terminal, fatal, and warning

DCS disk 1/O errors can also be received during an assenbly. Wen a disk
I/O error occurs, the assenbly will be aborted and control wll be returned
to EDAS conmand ready.

Three different types of assenbler errors can occur. The types relate to
the severity of the error. These types are:

Ter m nal Assenbly is terminated and control is returned
to command node

Fat al Processing of the line containing the error is
i medi ately stopped and no object code is
generated for that |line. Assenbly proceeds
with the next statenent.

V\r ni ng The error nessage is displayed and assenbly of
the line containing the warning continues. The
resul ting object code may not be what the
programmrer intended.

Command Errors
Buffer full
There is no nore roomin the text buffer for adding text.
Bad paraneter (s)
Any commrand line not entered according to the syntax appropriate for

that command will generate this error nmessage. Also, if you attenpt to |load a
file that is not a valid source code file, this nmessage may be di spl ayed.

Edi tor Assenbler Error Messages
2 - 76

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

Il egal comrand

The first character of the command |ine entered does not specify a valid
Edi t or Assenbl er conmand.

Li ne nunber too |arge

Renunbering with the specified starting |ine nunber and increment would
cause line(s) to be assigned nunbers greater than 65529. The renunbering is
not performed. This nmessage would also be displayed if you attenpted to
INSERT a line with a |ine nunber exceedi ng 65529.

No room between |ines

The next line number generated by |INSERT or REPLACE would be greater
than or equal to the line nunber of the next Iine of text in the buffer. The
i ncrenent nust be decreased or the lines in the buffer renunbered.
No such line

The line specified by a command does not exist. The command i s i gnored.
No text in buffer

A command requiring text in the buffer was issued when the buffer was
enpty. The conmands <L>oad, <l>nsert, <Q@uery, <S>w tch, ranch, <U>sage,
<V>iew, e<X>tend, <.>, <Z> and <1> can be invoked when the buffer is enpty.
Al other commands require at |least one line of text to be in the buffer
String not found

The string being searched for by the <F>ind command coul d not be found
between the current line and the end of the text buffer. This nessage wll
al so be displayed at the conpletion of a gl obal change conmmand.
DCS Errors

The standard DOS error messages will be displayed if the DOS returns an
error code after return fromany disk operation. Consult your DOS operating
manual for explanations of those errors. During nost error handling, the
abbreviated formof the error nessage will be displayed. If an I1/Oerror is
detected during an assenbly, the long formof the error nessage will be
di spl ayed. This allows you to observe which file was affected by the error

Any attenpt to load or *GET a file that has a line |longer than 128
characters will result in "Load file format error".
Termnal Errors
Menory overl ay aborted

During an assenbly to nmenory, a block of code was assenbled that would
load into a nmenory region other than the spare text buffer area. Your program

Edi tor Assenbl er Error Messages
2 - 77

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

will not be permitted to load to an address below the end of the text buffer
or above the synmbol table. Use the Usage command to locate the first
avai l able menory address. If you are using MACRGs, the first avail able nenory
address is indetermnate as the MACRO processor uses the nenory area
imediately following the text buffer for a MACRO nodel and string buffer
storage area.

Synbol table overfl ow

There is not enough nenory for the assenbler to generate your programs
synmbol table. You have three options:

Rermove conmment lines and/or comments follow ng Z-80 code
operands. This may free up enough space to perform the
assenbly.

Di vide your programinto two or nore nodules and assenble
themusing the *GET fil espec directive.

Extend the text buffer area, expand your source, then
assenble it using the *GET fil espec directive.

*GET or *SEARCH error

A "*GET fil espec” or "*SEARCH |ibrary" assenbler directive was found in
a library menber. A searched library cannot have "* GETs" or nested
" * SEARCHes"
Menber definition error: fil espec(mnmenber)

This is aresult of a fetched *SEARCH nenber not resolving the symnmbo
reference invoking its fetch
Fatal Errors

Bad | abel

The character string found in the label field of the source statenent
does not match the criteria specified under ASSEMBLY LANGUAGE | NFO - LABELS.

Expression error
The operand field contains an ill-fornmed expression
Il egal addressi ng node

The operand field does not specify an addressing node which is |ega
with the specified OPCODE

Il egal opcode

The character string found in the opcode field of the source statenent
is not a recognized instructi on menoni c, assenbl er pseudo-op, or MACRO nane.

Edi tor Assenbler Error Messages
2 - 78

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

M ssing information

Information vital to the <correct assenbly of the source line was not
provi ded. The OPCODE is missing or the operands are not conpletely specified.

Too many nested * GETs

*CGET fil espec nesting exceeds the nunber of |evels supported. The *GET
wi Il be ignored.

Uncl osed condi ti onal

The "END' statement or end of source was reached and an open "IF"
conditional block was still pending. Your program is mssing the closing
"ENDI F".

ENDI F wi t hout IF

An "ENDI F' pseudo-op was detected w thout a corresponding conditional
"I'F" or "IFxx" in effect. The "ENDIF" will be ignored.

ELSE wi thout IF

An "ELSE' statenment was detected without a preceding "IF' conditional
segment .

Fi |l espec required

A *GET or *SEARCH directive was detected but the statenent did not
contain the required file specification. The *GET or *SEARCH wi || be ignored.

Bad paraneter (s)

When out put preceding a MACRO definition, it inplies an error in the
paraneters of a MACRO.

Nest ed MACRO i gnor ed
A macro definition statement was nested in the nodel of another macro.
M ssi ng MACRO narme

The name field of the nacro definition statenent did not contain the
macro nanme. The macro will not be defi ned.

ENDM wi t hout MACRO

An ENDM pseudo- OP was detected while not in a nmacro definition phase. It
will be ignored.

Too many paraneters

In a macro call, the nunber of paraneters passed exceeded the nunber
defined for the macro. The macro call will not be expanded.

Edi tor Assenbl er Error Messages
2 -79

M SOSYS Editor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved
Too many nested MACRGCs

The nunber of pending nested nacro calls exceeds the current nest |evel
supported. The macro call will not be expanded.

MACRO forward reference

A macro call was detected prior to the definition of the macro. The
macro call will not be expanded since gross phase errors would result.

Mul tiply defined MACRO

A macro definition statement was detected for a macro al ready defined
The subsequent definition will be ignored.

VMAr ni ngs
Branch out of range

The destination of a relative junp instruction (JR or DINZ) is not
within the proper range for that instruction. The instruction is assenbled as
a branch to itself by forcing the offset to hex X FE .

Field overfl ow

A nunber or expression result specified in the operand field is too
large for the specified instruction operand. The result is truncated to the
| argest allowable nunber of bits. This error would also be output during a
gl obal change if a resultant |ine would exceed 128 characters.

Mul tiply defined synbol
The operand field contains a reference to the synbol which has been

defined in another line. The first definition of the synbol is used to
assenbl e the |ine.

Multiple definition

The source line is attenpting toillegally redefine a synbol. The
original definition of the synbol is retained. Synbols may only be redefined
by the DEFL pseudo-OP and only if they were originally defined by DEFL.
No END st at enent

The program END statenent is mssing. Note that if your program is
mssing the "END' statement, EDAS cannot detect an unclosed conditional
Al so, be aware that if your programhas a FALSE unclosed conditional, then
the "END' statenment will NOT be detectable - even if present.
Undefi ned synbo

The operand field contains a reference to a synbol which has not been
defined. A value of zero is used for the undefined synbol .

Edi tor Assenbler Error Messages
2 - 80

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

nj ect File Format

The disk file object code format consists of a header record, an
optional coment record, one or nmore |oad block records, and a transfer
address record. The specific formats of these records are as foll ows:

Header Record

The file header record consists of the hex byte X 05 (record type)
which indicates the header field of an object file. It is followed by the
header length byte which indicates the Ilength of the header data follow ng.
The | ength of the header data is constant in EDAS and is six bytes. The data
is constructed as the first six bytes of the object code file nane field and
is filled out with spaces if the file name is |l ess than six characters.

Comment Record

This record is optional. It is generated by the "COM' pseudo-OP. It
consists of a record type byte of X 1F followed by a length byte which is
the length of the comment. The comment data, itself, follows.

Load Bl ock Record

The load block record starts with a record type code of X 01' which
indicates it is a load block. A 1-byte length is next. This indicates the
I ength of the object code data plus the 2-byte block |oad address. The | ength
is encoded as a nodul o 256 val ue (object code Ilength of 253 = X FF', object
code length of 254 = X 00', object code length of 256 will show as X 02').

The block Ilength byte is followed by the 2-byte bl ock | oad address which
is the address that will be |loaded with the first byte of the bl ock

Finally the object code block inrediately follows for as many bytes as
two | ess than the bl ock | ength.

Transfer Address Record

The Transfer address record (TRAADR) starts with a record type of X 02'.
An X 02" is wittento indicate the length of the entry point address. This
is then followed by the 2-byte entry point or transfer address generated from
the label or constant in the operand field of the assenbler source END
statement. As is the case with all 16-bit data values, the TRAADR data has
the | oworder byte of the address followed by the high-order byte.

Source File Format

The source code file format used by EDAS has neither header nor |ine
nunbers. Headers and nunbers are entirely optional and can be generated wth
appropriate switches in the <Wsrite conmand. The formats are as foll ows:

Header Record

A header record as described under "oject file format™ is optionally
used for source files with the exception that the first byte is a hex X D3

Techni cal I nformation
2 - 81

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

(X53 - with bit 7 set) toidentify the file as source, imediately foll owed
by a 6-character nane (the name length byte is omtted). Files witten with
"W" contain this header

Text Lines

Text lines are witten in ASC | each conposed of an optional 5-character
line nunber (bit 7 is set), a space, the text Iline, ending with an <ENTER>
(X0D). Files witten with the "W" command i ncorporate both the 5-character
i ne nunber and foll owi ng space.
End-of -Fil e Mark

The file's end is indicated by an end-of-file mark of X 1A which would
be in the first character position of a text line (or 1st byte of the |line
nunber if line nunbered files are used).

Ref erence Data File Format

The reference data file is a conpressed collection of data correspondi ng
to each synbol definition and reference. The file contains a title record,
and definition/ reference records. The format of these records is as foll ows:
Title Record

The title record is always present even though the assenbl er source file
stream may or may not have supplied a Tl TLE pseudo-OP. The title record is 28
characters long. If the source files did not contain a TITLE pseudo-OP, the
record will be filled with spaces
Definition/ Ref erence Records

These records contain the data for either a synbol definition or
reference. It is conposed of a filenanme field, a line nunber field, a type
field, a value field (omtted for references), and a synbol nane field. These
fields are defined as foll ows:

Fi |l ename Field

This field will be either an eight character filenanme or a hex X 22'. If
a hex X 22', then the filenanme reference is the sane as the previous record.

Li ne Nunber Field

This field contains the line number of the definition or reference
statement in | ow order high-order form

Type Field

The type field contains an X 00° for a reference, an X 01' for a
definition, or an X 02' for a DEFL defined synbol.

Techni cal | nformation
2 - 82

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

Val ue Field

The value field contains the defined value of the synbol. This field is
omitted for references (type field = 0).

Nane Field

The nane field contains the synbol nane. It is termnated with a
carriage return (X OD). If the synbol is the nane of a macro, the first
character of the name has the high-order bit set.

Li nkage to Debuggi ng (Model 1/111 or TRSDOS 6. X)

In order to facilitate the debugging of user generated prograns, a
nunber of features have been built into EDAS. It provides the option of
assenbling source code directly to nenory. It provides a command to transfer
control to a user-supplied address (via the ranch command).

A re-entry address to the Editor Assenbler has been provided. If at any
time during the debuggi ng phase, you want to return to the Editor Assenbler
without reinitializing it (which would have deleted the entire text buffer),
and are under the control of a debugging utility that does not utilize nmenory
from X 5400" (X 2800' under TRSDOS 6.x) to the protected H GH$, issue a junp
conmand to X 5A03" (X 2D03" wunder TRSDOS 6.x). Alternately, you can provide a
"JP 5D03H' (or JP 2D0O3H wunder TRSDOS 6.x) 1in your programas an exit and
return to EDAS. Areturn to the Editor Assenbler wll be perfornmed and the
text buffer pointers will be maintained. If your program has naintained the
integrity of the stack pointer, a RET instruction will return to the EDAS
conmand pronpt as the top of the stack contains the pronpt address when an
exit is nade via the " B'ranch conmand.

EDAS disables the automatic entry to DEBUG on <BREAK> to avoid
i nadvertently entering DEBUG by depressing <BREAK> to exit an <l>nsert or
abort an assenbly. In order to enter DEBUG directly from EDAS, perform a
ranch command to address X 30'.

Techni cal I nformation
2 - 83

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

I nvoki ng the SAID Editor

SAIDis a full-screen text editor that can be used to edit assenbler
source, C-language source, or other ASCII text files. Wien used under TRSDOS
6.x or equivalent, SAID provides you with up to seven editing buffers, de-
pending on the availability of 32K nmenory banks, and the added capability of
nmovi ng bl ocks of text fromone buffer to another. Before SAIDis first used,
pl ease install it into your systemby running the SAIDINS installation pro-
gramas noted at the end of this chapter. SAID is easily invoked via:

SAID [fil espec] (parnil, parn2,...)

SAID * Used to re-enter SAID i mediately after
exiting so as to reclaimthe text buffers.

filespec The nanme of the file to edit. If filespec is
not found, SAID pronpts to create it.
Conmand line fil espec entry is optional

ASM Tabs default to 8. File extension defaults
to "/ASM'. X 1A stripped fromend of file
on read and replaced on wite.

to "/CCC'. X 1A stripped fromend of file
on read and replaced on wite.

EXT=string Sets the default file extension

TAB=Nnn Set default tab w dth.

Abbrevi ati ons: A=ASM C=CCC, E=EXT, T=TAB

Not e: EXT paraneter not usabl e under TRSDOS 1.3 and 2. 3.

TRSDOS 1.3 users must enter ASM and CCC parns as

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
|
par m=OFFFF and TAB entry in hexadeci mal, Oxx. |
I

I
I
I
I
I
I
I
I
I
I
I
I
|
| CcC Tabs default to 4. File extension defaults
I
I
I
I
I
I
I
I
I
I
I
I
I

Unless altered by SAIDINS, SAID conmand functions are invoked wth the
keyboard depressions as shown in the SAIDnmenu. In the followwng text, mul-
tiple key depressions are shown as connected sequences of keys wthin angle
brackets, i.e. <CLEAR><4> neans sinultaneously depress the <CLEAR> key and
t he <4> key.

Editing Status
SAID can display a great deal of status concerning the text contained in

the editing buffer. You also can control the optional display of the SAID
menu of command keys. This information will |ook Iike the foll ow ng:

Srch Repl Again Al Rev Hex Quote Copy Move Crd Print Exit

SAID — Full Screen Text Editor
3-1

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

==]== ==2== ==3== ==4== ==H== ==@f== ==7== ==8== ==0== ==(Q== ==' == ==-==
Ins Line Del Wrd Block Load Save WMacro File Mta Pg Dn Pg Up
i | e: aaaaaaaaaaaaaa Len: bbbbb/ccccc Ln:ddddd Col:ee = x'ff' ggg% Banks: hhhhhhh
rcheiiiitiiiiiiiiiiiii Repl:jjjjijjiiiiiiiijil Dr:kkk Ont:ll
Messages and prompts..." SAID Version 1.1

The top line wll be a rule of dashes with a plus sign "+" denoting each TAB
stop as established by either the default tabbing for the file type [ASM=8,
CCC=4] or that set via the TAB paraneter.

The next three-line nenuis optional. Its display node is established
when SAID is invoked by the MENU setting during the SAIDINS installation. The
META command al so permits you to toggle the display of this nenu. It is re-
conmended that you keep the nenu displayed until you get proficient at using
SAID s editing comrands. The menu displays the command function activated
when the key identified by the second line is pressed simultaneously with the
<CLEAR> key. The first line designates shifted keys and the third 1ine de-
si gnates unshifted keys.

The next line contains a great deal of information. The file specifi-
cation of the file currently being edited in the context buffer is identified
by "aaaaaaaaaaaaaa". The current length of the text is shown as "bbbbb" while
the total length of the editing buffer is showmm as " ccccc". SAID keeps track
of a logical line nunber for the text. For line nunbering purposes, aline is
considered to be all <characters up to and including a carriage return. The
nunber of the Iline to which the cursor is positioned to is shown as " ddddd".
The video colum nunber to which the cursor is positioned is shown as "ee"
This value wll range fromcolum 00 to colum 79 (63 in the case of a 64
colum screen). The character which the cursor is positioned over has its
val ue shown in hexadecinmal as "ff". This value is wuseful for determning the
text character for undisplayable character values. SAID al so keeps a ratio of
where the cursor is positioned relative to the end of the text. This is shown
as a percentage by the "ggg" value. It is accurate only when the text exceeds
99 characters.

The last field of the status line shows the availability of editing
buffers as "hhhhhhh". When SAID is invoked under those systens supporting
banked switching, SAID scans for the availability of up to seven editing
buffers. SAID wll display a dash for each buffer that is available. These
are selected by you wth the assignments 1, 2, 3, ..., 7. Anytinme that you
have entered text into one of these buffers, its corresponding dash will be
changed to a plus sign

The next I|ine of status shows the current search string: " iiiiii...";
the current replacenment string: "jjjjjj..."; the search direction, " kkk":
"For=forward"”, "Rev=reverse"; and the macro repeat count: "I|I1".

The last line will be used to display pronpting nmessages or error nes-
sages on an as required basis.

SAID — Full Screen Text Editor
3- 2

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

Cur sor Movenent

Cursor novenment relates to the re-positioning of the cursor on the

screen. "Up" novenents invoked while the cursor is on the top line of the
screen cause the text to be scrolled dowward. Conversely, "down" novenents
i nvoked while the cursor is on the bottomtext Iline will cause the text to be

scrol | ed upward.

Left one position <LEFT ARRON
Ri ght one position <RI GHT ARROW>
Up one line <UP ARRON>
Down one |ine <DOWN ARROMN
Begi nni ng of next word <CLEAR><4>
Next Screen Page <CLEAR><- >
Previ ous Screen Page <CLEAR><: >
Start of line <SH FT><LEFT ARROW>
End of |ine <SH FT><RI GHT ARROW
Start of file <CLEAR><UP ARRONF
End of file <CLEAR><DOMN ARRON>
Insert a tab <CLEAR><RI GHT ARRON:
Modes

SAI D operates in various nodes. |In norrmal operation, entered text over-

types any text beneath the cursor. The cursor wll appear as an underline
unless it is positioned over an underline character at which point the cursor
will be displayed as a full block (191D). When toggled into "insert" node,
all text to the right of the cursor will be pushed down one character as each
character is entered. The cursor is also changed to a full block. Al though a
TAB character occupies one position in the text buffer, it is expanded on the
screen via spacing to the next tab stop. In line insert node, a I|ine of
spaces is inserted into the text at the cursor position. A newline wll
automatically be inserted when you attenpt to type past the |ast position of
the opened line. Hex insertion node can be invoked regardl ess of the state of
i nsert node. The hex node allows you to enter all 256 character val ues by the
entry of two hexadecimal digits per character. 1In quote insert node, al
cursor novenent functions are defeated and the character val ues used for the
functions are entered into the text when a cursor novenent key is pressed.

I nsert/overtype node <CLEAR><1>

Li ne insert <CLEAR><2> - <Break> to cancel

Hex insert <CLEAR><SHI FT><6> - <Break> to cancel
Quot e insert <CLEAR><SHI FT><7> - <Break> to cancel

SAID — Full Screen Text Editor
3- 3

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

Del eti ons

This section relates to the various operations of deleting text. Wen
you invoke a deletion, it is preserved by SAID and can be restored via the
Rever se- DELETE function; however, only the LAST deletion perforned is saved.
Thus, if you delete a block via "delete-block”, the character renoved by the
DELETE key is lost after the "block" key causes the removal of the block
since the "block” delete is the last deletion. Fortunately, vyou only would
have to manual ly enter one character.

Del ete character <CLEAR><3>.

Del ete word <CLEAR><3> fol | oned by <CLEAR><4>
or just <CLEAR><4> if in del ete node.

Delete line <CLEAR><3> fol | owed by <CLEAR><2>
or just <CLEAR><2> if in del ete node.

Del et e bl ock Mark the bl ock, position cursor inside,
then <CLEAR><3> fol | owed by <CLEAR><5>

Delete to top <CLEAR><3> fol | owed by <CLEAR><UP ARRON
or just <CLEAR><UP ARRONs if in del ete node.

Delete to end <CLEAR><3> fol | owed by <CLEAR><DOMN ARRONF
or just <CLEAR><DNARW, if in del ete node.

Del ete all <CLEAR><3> fol | owed by <CLEAR><SH FT><4>.
Del etes entire context except nacro.

Undel et e [oops function] <CLEAR><SHI FT><5> fol | owed by <CLEAR><3>
which is "reverse"” followed by "del ete".

Macro functions

SAI D supports a macro key which can be soft programmed (or reprogramed)
by you throughout the operation of SAID. This key can store up to 64 key-
strokes. Its use for capturing a series of key entries for repetitive entry
will help in speeding up your editing and mnimze key entry. Note that in-
voking the macro will cause it to repeat according to the repeat rate count
set wth the Meta function. This repeat count is set to one when you store a
series of keystrokes for the macro key.

I nvoke current nacro <CLEAR><8>
Store a macro <CLEAR><6> fol | oned by <CLEAR><8>; The Macro

wi |l be saved until the next <CLEAR><8> or
until 64 characters are entered.

SAID — Full Screen Text Editor
3-4

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

I/0O functions

This section relates to the |oading or saving of text as well as print-
ing out the text buffer or a portion of it. Note that when you are nerging
two or nore files into the text buffer, SAIDw Il load the file at the cursor
|ocation - be it the beginning of the text, the mddle of the text, or the
end of the text. When you invoke "exit", SAIDw Il pronpt you to save any
buf fer which contains text. Note that when you save a file or exit, you wll
be pronpted for the fil espec. Respond via <ENTER> to use the current fil espec
shown in the status Iline or enter a new filespec which will becone the new
current one. SAID will abort a printing request if a <BREAK> is detected.

Print a bl ock Mar k bl ock, then <CLEAR><SHI FT><: >,
fol l owed by <CLEAR><5> foll owed by <0-9>

Print a file [in menory] <CLEAR><SHI FT><: > fol | owed by <CLEAR><9>

Load file at cursor position <CLEAR><6> followed by <CLEAR><9> then the
filespec in response to the pronpt.

Save file under current nanme <CLEAR><7> followed by <CLEAR><9>

Save bl ock Mar k bl ock, then <CLEAR><7> fol |l owed by
<CLEAR><5> fol |l owed by fil espec, then <0-9>.

Exi t <CLEAR><SHI FT><- >

Change fil espec <CLEAR><9> fol | owed by the fil espec.

Bl ock functions

SAID allows you to designate up to ten distinctly |abel ed bl ocks. These
are nunmbered from 0-9. You can have nmore than one bl ock designated with the
same nunber; however, in block copy or block nove operations, the first such
nunbered bl ock found in the text when searched fromthe beginning of the file
will be used for the copy or nove operation. Blocks are marked by indicating
a BLOCK START and a BLOCK END (the end marker must appear in the text after
the start marker).

Bl ock start <CLEAR><5> fol | owed by <O0-9>

Bl ock end <CLEAR><5> fol | owed by <CLEAR><DOMN ARRONE
or <CLEAR><5> fol | owed by <E>.

Copy bl ock Mar k bl ock, position to destination, then
<CLEAR><SHI FT><8> fol | owed by <0-9>. Note
that this command duplicates the contents
of the block at the new position. The
marked block is retained in its marked
posi tion.

Move bl ock Mar k bl ock, position to destination, then
<CLEAR><SHI FT><9> fol | owed by <0-9>. Note
that this command del etes the marked bl ock

SAID — Full Screen Text Editor
3-5

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

after inserting the block text into the
desi gnat ed position.

Unmark all bl ocks <CLEAR><SHI FT><5> fol | owed by <CLEAR><5>
Use before saving assenbl er source

Search and repl ace

This section relates to the facility for finding character strings in
the text and optionally replacing them wth another string. The repl acenent

string may be null. If any character in the search string is in uppercase
then the search will be case sensitive (i.e. "A" and "a" are distinct),
otherwi se the search wll be case insensitive (i.e. "A" and "a" are consi-

dered to be the sane character). The search string may contain a wldcard
character or characters which match all character values (the wldcard char-
acter is specified during the installation via SAIDINS). The replacenent
string may also contain a wldcard character or characters which indicates
that the character in that position in the search string will be re-used in
the replacenent string. Both the search and replacenent strings may contain
hexadeci mal values via entry of a per cent "% character followed by two
hexadeci mal digits. "Again" finds the next matching string or replaces the
next matching string. "All" invokes the search or replace on all matching
strings. Note that the neta comrand provides an option to force a query be-
fore replace which is also installable with SAI D NS

Sear ch <CLEAR><SHI FT><1> fol |l owed by the string.
Reverse search <CLEAR><SHI FT><5> fol | owed by <CLEAR><SHI FT><1>
foll owed by the search string
Repl ace I nvoke a SEARCH, then <CLEAR><SH FT><2>
foll owed by the replacement string.
Agai n <CLEAR><SHI FT><3>
Al l <CLEAR><SHI FT><4>

M scel | aneous
| nvoke a DOS command <CLEAR><SPACE>

This allows you to enter any DOS comrand that is acceptable at DOS Ready
with the exception of any command which alters H GH$

SAID — Full Screen Text Editor
3-6

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

I nvoke a Meta command <CLEAR><0> followed by [CE GH MO RT, 7, UP, DN|

This gives you access to an additional set of infrequently accessed
conmands. The neta conmand | etter determ nes the function invoked.

Cal cul at or
External nenory [TRSDOS 6.x version only]
S swap nmenory bank and full context
C copy a block froman external nenmory bank
Go to the start of aline via its |ine nunber
Toggl e the hel p displ ay
Set macro repeat count
Set SAID options
set ASM node in current buffer
set CCC node in current buffer
set default extension in current buffer
R Repl ace options: query before repl ace
T Set tabs position (i.e. every nth col umm)
7 Strip bit 7 off all text in buffer
<UP ARRON- Upper case next word
<DOMN ARROW Lower case next word

moO

OZT®

0>

Cal cul at or

SAID contains a built-in reverse polish notation calculator which sup-
ports the followi ng three types of nunbers:

XXXXB - Binary (i.e. 101101)
xxxxD - Decinmal (default, i.e. 45)
xXXxXH - Hexadecimal (i.e. 2d)

The foll owi ng functions are supported:

* Mul tiplication

/ Di vi si on

+ Addition

- Subtraction (negation is not supported)
& Logical AND

| Logical OR

N Logi cal XOR

Used to denote the previous result

If you wish to output the answer in any base other than decimal then follow
the '=" witha'B or an 'H to specify binary or hexadecimal. Entering a
period wll cause the last result to be substituted. Note the follow ng
sampl e calculation which multiplies 22 base 16 by 1111 base 2, then adds 2
base 10 and outputs the result in decinal

22h 1111b * 2 +<ENTER>

To output the sane result in binary, specify ". =b".

SAID — Full Screen Text Editor
3-7

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

Installing SAID [runni ng SAI D NS
SAI D should be installed in your system by invoking the command,
SAIDINS fil espec

where "fil espec” should be SAIDCVD - the name of the screen editor - unless
you renanmed SAIDYCVD to sonme other name. SAID is supplied to support all of
the SAID functions nmapped to the keyboard, with the exceptions of functions
34, 35, and 36. This mapping can be tailored to your specifications during
the installation of SAID while SAIDINSSCMD is running. This installation
program nust be used first to establish certain DOS interfacing needed before
SAI D can be used. The follow ng function codes are used during the instal-
lation of SAID. They designate the function nunbers corresponding to the
thirty-six separate conmand functions in SAl D

1 Cursor left 19 Meta

2 Cursor right 20 Previ ous Page

3 CQursor up 21 Next Page

4 Cursor down 22 Find

5 Begi nning of line 23 Repl ace

6 End of line 24 Again

7 Top of file 25 Al

8 End of file 26 Unmar k

9 Insert a tab 27 Hex

10 Insert node toggle 28 Quote

11 Line 29 Copy bl ock

12 Del ete 30 Move bl ock

13 wrd 31 DOS conmand

14 Bl ock 32 Print

15 Load 33 Exit

16 Save 34 Del ete previous character

17 Macro 35 Swap buffer with external buffer # 1
18 File 36 Swap buffer with external buffer # 2

The TRSDCS 6.x version of SAID uses the DOS keyboard driver and nmakes use of
t he type-ahead supported by the DOS. The Mddel 1/111 version of SAID contains
a built in keyboard driver which supports type-ahead as well as a conplete
ASCI | keyboard. The installation program can be used to override this
built-in keyboard driver. For LDOS users who are using the DOS KI/DVR, you
must either override the SAID driver or not use the LDOS KI/DVR (neani ng that
type-ahead must be off). The Model 1/111 keyboard driver uses various key
conbi nations to produce the extra characters not available on the TRS-80
keyboard. These are as foll ows:

<CLEAR> pl us <CLEAR><SHI FT> pl us
<, > [(left bracket) <, > { (left brace)
</> \ (reverse sl ash) </> | (vertical bar)
<>] (right bracket) <.> } (right brace)
<> N (carat) <;> (tilde)
<ENTER> _ (underline) <ENTER> (del ete)

<SH FT><DOMN ARROW> (control - use with A-2)

SAID — Full Screen Text Editor
3-8

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

I nvoki ng XREF

The XREF utility is used to generate a cross reference listing of
synmbol s used in your source code of a single assenbly stream Its syntax is:

I
XREF fil espec/ REF {(LEN=val , PAGE=val , LI NES=val , EQU,LIM T)} |

filespec is the specification of the reference data
file generated by the -XR switch of EDAS. If
the file extension is omtted, "REF" is used.

LEN is the length of your print line (the default
val ue is 80).

PAGE i s the maxi num nunber of |ines per page (the
default is 66 for Mod I, 67 for Mod 111).

I

I

I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
| LINES is the nunber of lines to print on a page (the

| default is 56 for Mod I, 57 for Mod 111). |
I I
| EQU is used to generate a file of EQUates instead |
| of the cross reference |isting. |
I I
| LIMT is used to limt the file of EQUates to those

| synbol s contai ning a speci al character. |
I

I

I

I

I

I

I

I
Note: the format of "value" is PARM=ddd or PARMEX hhhh'. |

PACE is not supported under TRSDOS 6. x

There are no parameter abbreviations.

The XREF/ CVD utility generates a synbolic cross-reference |isting which

includes a sorted list of all defined labels, the file of worigin of the
definition, the |line nunber of the definition, the value of the definition
and the 1line nunbers of all statements referencing the label. XREF will also
identify the filename of the file containing the references. XREF will not
identify unresolved |I|abels. Therefore, make sure that either all |labels are

resol ved during the assenbly that generates the XREF data file, or you do not
need the Iine nunbers of those unresolved references appearing in the cross
reference |isting.

XREF can al so be used to generate an assenbler source file of EQUates of
all synmbols used in the programbeing assenbled or a subset of all synbols
used. The LIMT paraneter is used to limt the EQJates to only those synbols
havi ng at | east one special character in the synbol nane.

XREF uses, as input, the reference data file which is optionally
generated by the -XR switch during the LISTING pass of EDAS (phase 2). XREF
cannot function wthout this data file. You need not enter the file
extension, /REF, as it will be assuned if omtted.

Cross Reference Uility
4 - 1

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

The XREF command |ine paraneters enclosed in parentheses are entirely
optional. The may be used as foll ows:

LEN

This paranmeter controls the printed line Iength during the XREF |isting.
If omtted, a value of 80 is assuned to deal with 80-colum line printers. If
you are using a wide-carriage printer (typically 132 colums), then XREF can
use the entire print line by specifying the paraneter as:

XREF (LEN=132)

PAGE

This paranmeter controls the page size. A value of 66 |lines per page (67
on the Model 11l due to its line counter starting from 1 instead of 0) is
used. |If your paper is shorter or longer, you can re-specify the page |ength

fromthe command |ine. For instance:
XREF fil espec (PAGE=51, LI NES=41)

will set the page length to 51 lines per page and initialize to print 41
l'i nes.

LI NES

This paranmeter controls the quantity of lines printed on a page before a
formfeed is generated. LINES defaults to a value of 56

EQU

This paranmeter controls the generation of the EQUate file. If specified,
then the cross reference listing is suppressed and a source file of synbols
equated to their value is generated. The filespec used to wite the EQUate
file will be constructed using the filenane and drive specification of the
"IREF" file. Afile extension of "/EQJ wll be used. Synmbols defined by the
"DEFL" pseudo-OP will be maintained as DEFL's in the EQUate file.

LIMT

This parameter controls what synbols are witten to the EQUate file. If
entered in addition to the "EQJ paraneter, then the EQJate file will be
limted to those synbols that contain at |east one special character (a
character other than A-Z, 0-9).

Cross Reference Uility
4 - 2

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

Cross- Ref erence Listing

Three informative messages will be displayed prior to generating the

listing. "Building synbols declared” will be displayed as XREF creates a
table of all synbols declared. The nessage, "Sorting synbol table" will be
di spl ayed as the synbols are sorted. A second pass through the REF data file
will be nmade while the nessage, "Building synbols referenced" is displayed.

This pass is used to create a second table of all references to synbols.

The listing will contain a heading on each page conposed of the system
DATE and TIME, the TITLE pseudo-op text, and a page nunber. The headi ng needs
a mni mum of 74 columms. Thus, you should not specify a LEN paraneter of |ess

than 74. The reference colums will include:
Oigin
The fil enane where the synbol was declared. The ORIG@Nw Il list either

the source filenane or the filenane of the "*GET"/"*SEARCH' directive.
Synbol i ¢ Label

This colum contains the defined synbol nane. If the synbol was defined
by a "DEFL" pseudo-OP, a plus sign, "+", will precede the synbol nane.

Val ue

This colum contains the value of the synbol as determ ned during the
assenbly process. |If the synbol shows a DEFL definition, the value wll be
the first defined val ue.
Li ne#

This colum lists the |line nunber of the statenent defining the synbol.

Usage

This colum contains the filename of the file containing a reference to
the label. It will be the filename of the *GET/*SEARCH fil espec

Li ne# of References

This field will contain the Iine nunber of all source statenents which
reference the synbol. Al of the references listed on a print line will be
contained in the file identified under the usage colum. Wenever the Usage
file changes, it will cause a newline to be generated in the |isting.
Statistics

The quantity of synbols defined is listed along with the quantity of
ref erences associated with those definitions.

Cross Reference Uility
4 - 3

M SOSYS Edi tor Assenbl er Version 4.x
Copyright 1984 M SOSYS, Inc., Al rights reserved

TTD

The M SOSYS TTD wutility is wused for transferring to disk, a source
cassette file that was created with the Radio Shack EDTASM M crosoft
EDTASMt, or other conpatible editor assenbler. TTDis not supported under
TRSDOCS 6. X.

To execute the TTD utility, at your DOCS ready, sinply use the syntax:

I I
| TTD {:d} |

TID is used to transfer a source cassette file to disk. The fil espec
will be constructed using the filename found on the cassette tape file and

the file extension "/ASM'. If the optional drive specification, ":d" (where
"d"* is the drive nunber of the drive receiving the disk file), is entered
with the TTD conmmand line, it will be used in the construction of the file

speci fication.
TTD wi Il pronpt you to ready the cassette via the nmessage:

Ready cassette and <ENTER> -> for a Model |
Ready cassette and enter <H L> -> for a Mdel 111

The <H L> entry for Mddel 111 wusers will select either Hi gh speed cassette
operation (1500 baud) or Low speed cassette operation (500 baud). Respond to
the pronpt by depressing the <ENTER> key if you are a Model | user, or the
correct baud rate character if you are a Model I11 user.

The cassette source file will be transferred to disk. TIDw Il then
return to DOCS.

Tape-to-Disk Uility
4 - 4

*x**x NOTICE***
***x LIMITED WARRANTY**x

MISOSYS shall have no liability or responsibility to the purchaser or
any other person, company, or entity with respect to any liability, loss, or
damage caused or alleged to have been caused by this product, including but
not limited to any interruption of service, loss of business and anticipatory
profits, or consequential damages resulting from the operation or use of this
program.

Should this program recording or recording media prove to be defective
in manufacture, labeling, or packaging, MISOSYS will replace the program upon
return of the program package to MISOSYS within 90 days of the date of
purchase. Except for this replacement policy, the sale or subsequent use of
this program material is without warranty or liability.

*k kx WARNING®** *

This program package is copyrighted with all rights reserved. The
distribution and sale of this program is intended for the personal use of the
original purchaser only and for use only on the computer system noted herein.
Furthermore, copying, duplicating, selling, or otherwise distributing this
product is expressly forbidden. In accepting this product, the purchaser
recognizes and accepts this agreement.

MISOSYS, Inc.

P. 0. Box 239
Sterling, Virginia 22170-0239

703-450-41381

	Top of document
	Introduction
	Invoking EDAS
	Invoking MAS
	Invoking MED
	Assembly Language Syntax
	Symbolic Labels
	Operands
	Comments
	Expressions
	Z-80 Status Indicators (FLAGS)
	Pseudo-OPs
	Assembler Directives
	Macro Processor
	EDAS Commands
	<A>ssemble
	ranch
	<C>opy
	<D>elete
	<F>ind
	<H>ardcopy
	<I>nsert
	<L>oad
	<M>ove
	Re<N>umber
	<P>rint
	<Q>uery
	<R>eplace
	<S>witch
	<T>ype
	Memory <U>SAGE
	<V>iew
	<W>rite
	e<X>tend
	<1> (ONE)

	Error Messages
	General
	Command Errors
	DOS Errors
	Terminal Errors
	Fatal Errors
	Warnings

	Technical information
	SAID Editor
	Cursor Movement
	Modes
	Deletions
	Macro functions
	I/O functions
	Block functions
	Search and replace
	Invoke a Meta command
	Calculator
	Installing SAID [running SAIDINS]

	Cross Reference Utility
	Invoking XREF
	Cross-Reference Listing

	Tape to disk utility

